Arabian Journal for Science and Engineering

, Volume 39, Issue 12, pp 9015–9023 | Cite as

Solar Radiation Effects on Cu–Water Nanofluid Flow over a Stretching Sheet with Surface Slip and Temperature Jump

  • Kalidas DasEmail author
  • Pinaki Ranjan Duari
  • Prabir Kumar Kundu
Research Article - Mechanical Engineering


In the present study, hydromagnetic convective flow and heat transfer of an absorbing and electrically conducting Cu–water nanofluid over a semi-infinite, ideally transparent, permeable stretching sheet due to solar radiation is considered. The flow considered is under both surface and thermal slip conditions. The governing equations are transformed into a nonlinear ordinary differential equations using classical Lie group approach which are solved numerically by means of the efficient numerical shooting technique with fourth-order Runge–Kutta scheme. The effects of involved parameters on the velocity and temperature profiles, skin friction and Nusselt number are examined and discussed through graphs and tables. Comparisons with previously published works are performed, and excellent agreement between the results is obtained.


Nanofluid Lie group analysis Solar energy radiation Magnetic field Slip conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunt, A.J.: Small particle heat exchangers. Report LBL-78421 for the US Department of Energy, Lawrence Berkeley Laboratory (1978)Google Scholar
  2. 2.
    Abu-Nada E., Masoud Z., Hijazi A.: Natural convective heat transfer enhancement in horizontal concentric annuli using nanofluids. Int. Commun. Heat Mass Transf. 35(5), 657–665 (2008)CrossRefGoogle Scholar
  3. 3.
    Aminossadati S.M., Ghasemi B.: Natural convection of water–CuO nanofluid in a cavity with two pairs of heat source-sink. Int. Commun. Heat Mass Transf. 38, 672–678 (2011)CrossRefGoogle Scholar
  4. 4.
    Aziz A., Khan W.A.: Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate. Int. J. Therm. Sci. 52, 83–90 (2012)CrossRefGoogle Scholar
  5. 5.
    Clausing A.: Analysis of convective losses from cavity solar central receivers. Sol. Energy 27, 295–300 (1981)CrossRefGoogle Scholar
  6. 6.
    Hamad M.A.A., Ferdows M.: Similarity solution of boundary layer stagnation point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a lie group analysis. Commun. Nonlinear Sci. Numer. Simul. 17, 132–140 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Kuznetsov A.V., Nield D.A.: Natural convective boundary layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)CrossRefGoogle Scholar
  8. 8.
    Khan W.A., Aziz A.: Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux. Int. J. Therm. Sci. 50, 1207–1214 (2011)CrossRefGoogle Scholar
  9. 9.
    Khanafer K., Vafai K., Lightstone M.: Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2006)CrossRefGoogle Scholar
  10. 10.
    Moradi A., Alsaedi A., Hayat T.: Investigation of nanoparticles effect on the Jeffery–Hamel flow. Arab. J. Sci. Eng. 38(10), 2845–2853 (2013)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Noghrehabadi A., Samimi A.: Natural convective heat transfer of nanofluids due to thermophoresis and Brownian diffusion in a square enclosure. Int. J. Eng. Adv. Technol. 1, 88–93 (2012)Google Scholar
  12. 12.
    Saedodin S., Shahbabaei M.: Thermal analysis of natural convection in porous fins with homotopy perturbation method (HPM). Arab. J. Sci. Eng. 38(8), 2227–2231 (2013)CrossRefGoogle Scholar
  13. 13.
    Vajravelu K., Prasad K.V., Lee J., Lee C., Pop I., Van Gorder RA.: Convective heat transfer in the flow of viscous Ag–water and Cu–water nanofluids over a stretching surface. Int. J. Therm. Sci. 50, 843–851 (2011)CrossRefGoogle Scholar
  14. 14.
    Yazdi M., Moradi A., Dinarvand S.: MHD mixed convection stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid in the presence of thermal radiation. Arab. J. Sci. Eng. 39(3), 2251–2261 (2014)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Zafariyan S., Fanaee A., Mohammadzadeh A.: The investigation of thermal and solutal secondary effects on MHD convective transfer past a vertical surface in a porous medium. Arab. J. Sci. Eng. 38(11), 3211–3220 (2013)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Chamkha A.J., Issa C., Khanafer K.: Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation. Int. J. Therm. Sci. 41, 73–81 (2002)CrossRefGoogle Scholar
  17. 17.
    Dehghan A.A., Behnia M.: Combined natural covection conduction and radiation heat transfer in a discretely heated open cavity. ASME J. Heat Transf. 118, 54–56 (1996)CrossRefGoogle Scholar
  18. 18.
    Muftuoglu A., Bilgen E.: Heat transfer in inclined rectangular receivers for concentrated solar radiation. Int. Commun. Heat Mass Transf. 35, 551–556 (2008)CrossRefGoogle Scholar
  19. 19.
    Kandasamy R., Muhaimin I., Khamis A.B., Roslan R.B.: Unsteady Hiemenz of Cu-nanofluid over a porous wedge in the presence of thermal stratification due to solar energy radiation: Lie group transformation. Int. J. Therm. Sci. 65, 196–205 (2013)CrossRefGoogle Scholar
  20. 20.
    Anbuchezhian N., Srinivasan K., Chandrasekaran K., Kandasamy R.: Magnetohydrodynamic effects on natural convection flow of a nanofluid in the presence of heat source due to solar energy. Meccanica 48, 307–321 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Navier C.L.M.H.: Mémoire sur les lois du mouvement des fluids. Mém. Acad. R. Sci. Inst. Fr. 6, 389–440 (1823)Google Scholar
  22. 22.
    Choi, C.H.; Westin, J.A.; Breuer, K.S.: To slip or not to slip water flows in hydrophilic and hydrophobic microchannels. In: Proceedings of IMECE New Orlaneas LA Paper No. 2002-33707 (2002)Google Scholar
  23. 23.
    Hina S., Hayat T., Alsaedi A.: Slip effects on MHD peristaltic motion with heat and mass transfer. Arab. J. Sci. Eng. 39(2), 593–603 (2014)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Martin, M.J.; Boyd, I.D.: Blasius Boundary Layer Solution with Slip Flow Conditions. Presented at the 22nd Rarefied Gas Dynamics Symposium Sydney Australia (2000)Google Scholar
  25. 25.
    Martin M.J., Boyd I.D.: Momentum and heat transfer in a laminar boundary layer with slip flow. J. Thermophys. Heat Transf. 20(4), 710–719 (2006)CrossRefGoogle Scholar
  26. 26.
    Wang C.Y.: Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Anal. Real World Appl. 10(1), 375–380 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Van Gorder R.A., Sweet E., Vajravelu K.: Nano boundary layers over stretching surfaces. Commun. Nonlinear Sci. Numer. Simul. 15, 1494–1500 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Wang C.Y.: Free convection on a vertical stretching surface. J. Appl. Math. Mech. 69, 418–420 (1989)zbMATHGoogle Scholar
  29. 29.
    Das K.: Slip effects on MHD mixed convection stagnation point flow of a micropolar fluid towards a shrinking vertical sheet. Comput. Math. Appl. 63, 255–267 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Das, K.: Nanofluid flow over a shrinking sheet with surface slip. Microfluid. Nanofluidics (on line published). doi: 10.1007/s10404-013-1216-7 (2013)
  31. 31.
    Maxwell J.: A treatise on electricity and magnetism, 2nd edn. Oxford University Press, Cambridge (1904)Google Scholar
  32. 32.
    Oztop H.F., Abu-Nada E.: Numerical study of natural convection in partially heated rectangular enclosers with nano-fluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)CrossRefGoogle Scholar
  33. 33.
    Kafoussias N.G., Williams N.G.: Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity. Int. J. Eng. Sci. 33, 1369–1384 (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2014

Authors and Affiliations

  • Kalidas Das
    • 1
    Email author
  • Pinaki Ranjan Duari
    • 2
  • Prabir Kumar Kundu
    • 2
  1. 1.Department of MathematicsKalyani Government Engineering CollegeKalyaniIndia
  2. 2.Department of MathematicsJadavpur UniversityKolkataIndia

Personalised recommendations