Advertisement

Arabian Journal for Science and Engineering

, Volume 39, Issue 11, pp 8147–8156 | Cite as

Analysis of a Cascade Refrigeration System (CRS) by Using Different Refrigerant Couples Based on the Exergetic Performance Coefficient (EPC) Criterion

  • Yasin UstEmail author
  • A. Sinan Karakurt
Research Article - Mechanical Engineering

Abstract

A theoretical performance analysis based on the exergetic performance coefficient (EPC) criterion has been carried out for a cascade refrigeration system for different refrigerant couples. The EPC criterion is defined as the ratio of exergy output to the total exergy destruction rate (or loss rate of availability). According to the results of the study, the refrigerant couples R23-R717 show the best performance in terms of EPC and coefficient of performance from among the other refrigerant couples (R23-R290, R23-R404A, R23-R507A and R23-R717). In the analysis, R23 was used for the lower temperature cycle and the other refrigerants are used for the higher temperature cycle. The effects of the temperature difference in the cascade condenser and the evaporator and condenser temperature on the EPC, coefficient of performance and exergy destructions have been thoroughly investigated for the refrigerant couple R23-R717.

Keywords

Cascade refrigeration system Thermodynamic cycle Optimization Performance analysis 

List of symbols

COP

Coefficient of performance

Ėx

Exergy rate (kW)

eX

Specific exergy (kj/kg)

ĖxD

Exergy destruction rate (kW)

EPC

Exergetic performance coefficient

h

Specific enthalpy (kj/kg)

i

ith component

in

Input

Mass flow rate of the refrigerant (kg/s)

out

Output

\({\dot{Q}}\)

Rate of heat transfer (kW)

s

Specific entropy (kj/kgK)

T

Temperature (K)

VCR

Vapor compression refrigerator

Electrical power input (kW)

x

Quality

Greek letters

ε

Exergy efficiency

η

Efficiency

Subscripts

ci

Isentropic compressor

comp

Compressor

cond

Condenser

cs

Cooled space

em

Electrical

exva

Expansion valve

evap

Evaporator

m

Mechanical

tot

Total

0

Environment conditions

Cascon

Cascade condenser

LTC

Low-temperature cycle

HTC

High-temperature cycle

Superscripts

*

Maximum EPC conditions

PH

Physical

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cengel, Y.A.; Boles, M.A.: Thermodynamics: An Engineering Approach, 5th Ed. pp. 616–620, USA, McGraw-Hill (2006)Google Scholar
  2. 2.
    Halimic E., Ross E., Agnew B., Anderson A., Pottes I.: A comparison of the operating performance of alternative refrigerants. Appl. Thermal Eng., 23, 1441–1451 (2003)CrossRefGoogle Scholar
  3. 3.
    SpatZ M.W., Motta S.F.Y.: An evaluation of options for replacing HCFC-22 in medium temperature refrigeration systems. Int. J. Refrig. 27, 475–483 (2004)CrossRefGoogle Scholar
  4. 4.
    Xuan Y., Chen G.: Experimental study on HFC-161 mixture as an alternative refrigerant to R502. Int. J. Refrig. 28, 436–441 (2005)CrossRefGoogle Scholar
  5. 5.
    Fatouh M., El Kafafy M.: of propane/commercial butane mixtures as possible alternatives to R134a in domestic refrigerators. Energy Convers. Manag. 47, 2644–2658 (2006)CrossRefGoogle Scholar
  6. 6.
    Han X.H., Wang Q., Zhu Z.W., Chen G.M.: Cycle performance study on R32/R125/R161 as an alternative refrigerant to R407C. Appl. Thermal Eng. 27, 2559–2565 (2007)CrossRefGoogle Scholar
  7. 7.
    Mani K., Selladurai V.: Experimental analysis of a new refrigerant mixture as drop-in replacement for CFC12 and HFC134a. Int. J. Thermal Sci. 47, 1490–1495 (2008)CrossRefGoogle Scholar
  8. 8.
    Kilicarslan A., Hosoz M.: Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples. Energy Convers. Manag. 51, 2947–2954 (2010)CrossRefGoogle Scholar
  9. 9.
    Niu B., Zhang Y.: Experimental study of the refrigeration cycle performance for the R744/R290 mixtures. Int. J. Refrig. 30, 37–42 (2007)CrossRefGoogle Scholar
  10. 10.
    Rezayan O., Behbahaninia A.: A Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems. Energy, 36, 888–895 (2011)CrossRefGoogle Scholar
  11. 11.
    Dopazo J.A., Seara J.F., Sieres J., Uhía F.J.: Theoretical analysis of a CO2–NH3 cascade refrigeration system for cooling applications at low temperatures. Appl. Thermal Eng. 29, 1577–1583 (2009)CrossRefGoogle Scholar
  12. 12.
    Parekh A.D., Tailor P.R.: Thermodynamic analysis of R507A-R23 cascade refrigeration system. World Acad. Sci. Eng. Technol. 57, 992–996 (2011)Google Scholar
  13. 13.
    Getu H.M., Bansal P.K.: Thermodynamic analysis of an R744–R717 cascade refrigeration system. Int. J. Refrig. 31, 45–54 (2008)CrossRefGoogle Scholar
  14. 14.
    Bansal P.K., Jain S.: Cascade systems: past, present, and future. ASHRAE Trans 11(1), 245–252 (2007)Google Scholar
  15. 15.
    Lee T.S., Liu C.H., Chen T.W.: Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. Int. J. Refrig. 29, 1100–1108 (2006)CrossRefGoogle Scholar
  16. 16.
    Ust, Y.; Akkaya, A.V.; Safa, A.: Analysis of a vapor compression refrigeration system via exergetic performance coefficient (EPC) criterion. J. Energy Inst. 84, 2 (2011)Google Scholar
  17. 17.
    Aprea C., Renno C., Safa A.: Experimental comparison of R22 with R417A performance in a vapour compression refrigeration plant subjected to a cold store. Energy Convers. Manag. 45, 1807–1819 (2004)CrossRefGoogle Scholar
  18. 18.
    Kotas T.J.: The Exergy Method Of Thermal Plant Analysis. Butterworths, London (1985)Google Scholar
  19. 19.
    Kabul A., Kizilkan O., Yakut K.A.: Performance and exergetic analysis of vapor compression refrigerator system with an internal heat exchanger using a hydrocarbon, isobutane (R600a). Int. J. Energy Res. 32, 32–824 (2008)CrossRefGoogle Scholar
  20. 20.
    Morosuk, T.; Tsatsaronis, T.; Schult, M.: Conventional and advanced exergetic analyses: theory and application. Arab. J. Sci. Eng. 38, 2 (2013)Google Scholar
  21. 21.
    Bejan A., Tsatsaronis G., Moran M.: Thermal Design and Optimization. Wiley, New York (1996)zbMATHGoogle Scholar
  22. 22.
    Designation and safety classification of refrigerants. ASHRAE Handbook-Fundamentals, Ch. 29 (2009)Google Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2014

Authors and Affiliations

  1. 1.Department of Naval Architecture and Marine EngineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations