Arabian Journal for Science and Engineering

, Volume 39, Issue 11, pp 7477–7482 | Cite as

Sonophotocatalytic Degradation Studies of Alizarin Reactive Red Dye

Research Article - Chemical Engineering


The photocatalytic oxidative degradation and discoloration of the reactive dye was investigated. Along with photochemical oxidation process, the sonochemical effect was also used. Experiments were performed in slurry mode in both UV and solar light at optimized conditions. Degradation observed was 88% under photocatalytic optimized conditions, i.e., pH 4.8, TiO2 = 0.3 g L−1 and oxidant dose of 0.3 g L−1 after 180 min. sonophotocatalytic treatment enhanced the degradation up to 94% with optimized parameters of photocatalytic treatment. The results obtained were quite appreciable as also confirmed from reduction in COD from 280 to 36 mg L−1. The results of sonophotocatalytic degradation of dye showed that it could be used as efficient and environmental friendly technique for the complete degradation of recalcitrant organic pollutants that will increase the chances for the reuse of wastewater.


Reactive dye Photocatalytic Recalcitrant Sonochemical Wastewater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gogate P.R., Pandit A.B.: A review of imperative technologies for wastewater treatment II: hybrid methods. Adv. Environ. Res. 8(3–4), 553–597 (2004)CrossRefGoogle Scholar
  2. 2.
    Abrahart, E.N.: Dyes and Their Intermediates, 2nd edn. Chemical Publishing Co, New York (1997)Google Scholar
  3. 3.
    Sax, N.I.; Lewis, R.J.: Dangerous Properties of Industrial Materials. Wiley, New York (1992)Google Scholar
  4. 4.
    Legrini O., Oliveros E., Braun A.M.: Photochemical processes for water treatment. Chem. Rev. 93, 671–698 (1993)CrossRefGoogle Scholar
  5. 5.
    Mills A., Davies R.H., Worsley D.: Water purification by semiconductor photocatalysis. Chem. Soc. Rev. 22, 417–425 (1993)CrossRefGoogle Scholar
  6. 6.
    Pera-Titus M., Garcıa-Molina V., Baños M.A., Giménez J., Esplugas S.: Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B: Environ. 47(4), 219–256 (2004)CrossRefGoogle Scholar
  7. 7.
    Barka N., Qourzal S., Assabbane A., Ait-Ichou Y., Nounah A., Lachheb H., Houas A.: Solar photocatalytic degradation of textile dyes on dynamic pilot plant using supported TiO2. Arab. J. Sci. Eng. 35(2A 131), 131–137 (2010)Google Scholar
  8. 8.
    Ikehata K., Naghashkar N.J., El-Din M.G.: Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone: Sci. Eng. 28, 353–414 (2006)CrossRefGoogle Scholar
  9. 9.
    Blake, D.M.; Link, H.F.; Eber, K.: Solar photocatalytic detoxification of water. In: Boer, K.W. (ed.) Advances in Solar Energy, pp. 167–210. American Solar Energy Society, Boulder (1992)Google Scholar
  10. 10.
    Andreozzi R., Caprio V., Insola A., Marotta R.: Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53(1), 51–59 (1999)CrossRefGoogle Scholar
  11. 11.
    Munter R.: Advanced oxidation processes—current status and prospects. Proc. Estonian Acad. Sci. Chem. 50(2), 59–80 (2001)Google Scholar
  12. 12.
    Ollis, D.F.; Pelizzetti, E.; Serpone, N.: Heterogeneous Photocatalysis in the Environment: Application to Water Purification. Photocatalysis: Fundamentals and Applications. Wiley, New York (1989)Google Scholar
  13. 13.
    Adewuyi Y.G.: Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environ. Sci. Technol. 39(22), 8557–70 (2005)Google Scholar
  14. 14.
    Joseph C.G., Puma G.L., Bono A., Krishnaiah D.: Sonophotocatalysis in advanced oxidation process: a short review. Ultrason. Sonochem. 16(5), 583–589 (2009)CrossRefGoogle Scholar
  15. 15.
    Suslick K.S.: Application of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 295–326 (1999)CrossRefGoogle Scholar
  16. 16.
    Tezcanli-Guyer G., Ince N.H.: Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics 42(1–9), 603–609 (2004)CrossRefGoogle Scholar
  17. 17.
    Okitsu K.K., Iwasaki Yobiko Y., Bandow H., Nishimura R., Maeda Y.: Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason. Sonochem. 12(4), 255–262 (2005)CrossRefGoogle Scholar
  18. 18.
    Selli E.: Synergistic effects of sonolysis combined with photocatalysis in the degradation of an azo dye. Phys. Chem. Chem. Phys. 4(24), 6123–6128 (2002)CrossRefGoogle Scholar
  19. 19.
    Anju S.G., Yesodharan S., Yesodharan E.P.: Zinc oxide mediated sonophotocatalytic degradation of phenol in water. Chem. Eng. J. 189, 84–93 (2012)CrossRefGoogle Scholar
  20. 20.
    Jagannathan M., Grieser F., Ashokkumar M.: Sonophotocatalytic degradation of paracetamol using TiO2 and Fe3. Sep. Pur. Tech. 103, 114–118 (2012)CrossRefGoogle Scholar
  21. 21.
    He Y., Grieser F., Ashokkumar M.: Kinetics and mechanism for the sonophotocatalytic degradation of p-chlorobenzoic acid. J. Phys. Chem. A. 115(24), 6582–6588 (2011)CrossRefGoogle Scholar
  22. 22.
    Lucas M.S., Peres J.A.: Degradation of reactive black 5 by fenton/UV-C and ferrioxalate/H2O2/solar light processes. Dyes Pigments 74, 622–629 (2007)CrossRefGoogle Scholar
  23. 23.
    Fahmi C.Z.A.A., Nazerry R.R.: Multi-stage ozonation and biological treatment for removal of azo dye industrial effluent. IJESD 1(2), 193–198 (2010)CrossRefGoogle Scholar
  24. 24.
    Sarria V., Parra S., Invernizzi M., Peringer P., Pulgarin C.: Photochemical–biological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone. Water Sci. Technol. 44, 93–101 (2001)Google Scholar
  25. 25.
    Chatzisymeon E., Petrou C., Mantzavinos D.: Photocatalytic treatment of textile dye house effluents with simulated and natural solar light. Glob. Nest 15, 21–28 (2013)Google Scholar
  26. 26.
    APHA Standard Methods for the Examination of Water and Wastewater: Standard method no. 5220 C 5-14, American Water Works Association, New York (1989)Google Scholar
  27. 27.
    Toor A.P., Verma A., Singh V., Jotshi C.K., Bajpai P.K.: Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes Pigments 68, 53–60 (2006)CrossRefGoogle Scholar
  28. 28.
    Wu S.: Principles of advanced chemical oxidation processes and their application in wastewater treatment of pulp and paper industry. Chung-kuo Tsao Chih/China Pulp Pap. 18, 43–49 (1999)Google Scholar
  29. 29.
    Subrahmanyam M., Rao K.V.S., Babu M.R., Srinivas B.: Photocatalytic degradation of textile dyes using TiO2 based catalysts. Ind. J. Environ. Prot. 18, 266–272 (1998)Google Scholar
  30. 30.
    Hachem C., Bocquillon F., Zahraa O., Bouchy M.: Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigment. 49, 117–125 (2001)CrossRefGoogle Scholar
  31. 31.
    Verma A., Sheorn M., Toor A.P.: Titanium dioxide mediated photocatalytic degradation of malathion in aqueous phase. Indian J. Chem. Technol. 20(1), 46–51 (2013)Google Scholar
  32. 32.
    Dubey S.K., Srivastava P., Verma A., Rajor A.: Solar photocatalytic treatment of textile wastewater for biodegradability enhancement. Int. J. Environ. Eng. 1(2), 152–164 (2009)CrossRefGoogle Scholar
  33. 33.
    Prevot A.B., Baiocchi C., Brussino M.C., Pramauro E., Savarino P., Augugliaro V., Marcì G., Palmisano L.: Photocatlytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspension. Environ. Sci. Technol. 35, 971–976 (2001)CrossRefGoogle Scholar
  34. 34.
    Yano J., Matsuura J., Ohura H., Yamasaki S.: Complete mineralization of propyzamide in aqueous solution containing TiO2 particles and H2O2 by the simultaneous irradiation of light and ultrasonic waves. Ultrason. Sonochem. 12(3), 197–203 (2005)CrossRefGoogle Scholar
  35. 35.
    Verma A., Kaur H., Dixit D.: Photocatalytic, sonolytic and sonophotocatalytic degradation of 4-chloro-2-nitro phenol. Arch. Environ. Prot. 39(1), 65–76 (2013)Google Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2014

Authors and Affiliations

  1. 1.School of Energy and EnvironmentThapar UniversityPatialaIndia

Personalised recommendations