Arabian Journal for Science and Engineering

, Volume 39, Issue 8, pp 6375–6384 | Cite as

A Stable Lattice Boltzmann Method for Steady Backward-Facing Step Flow

Research Article - Mechanical Engineering


The severe problem of the most lattice Boltzmann methods (LBM) is the instability within the solution. This paper presents the implementation and applicability of a stable finite volume (FV) formulation of LBM for simulating steady separating and reattaching flow pasts backward-facing step geometry. For simulation purpose, a cell-centered scheme is implemented to discretize the convection operator and new weighting factors are used as flux correctors. Compared with previous FV formulations, a remarkable stability improvement is achieved and the secondary recirculation region is clearly captured for Reynolds numbers higher than 400. The simulation results show good agreement with benchmark data, which demonstrate the trustworthiness of the scheme.


LBM Weighting factors FV Backward-facing step Bifurcation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McNamara G.R., Zanetti G.: Use of the Boltzmann equation to simulate lattice automata. J. Phys. Rev. Let. 61, 2332–2335 (1988)CrossRefGoogle Scholar
  2. 2.
    Succi S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford (2001)MATHGoogle Scholar
  3. 3.
    Junk M., Klar A.: Discretizations for the incompressible Navier–Stokes equations based on the lattice Boltzmann method. SIAM. J. Sci. Comp. 22, 1–19 (2000)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Lallemand P., Luo L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E 61, 6546–6562 (2000)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Mc Cracken M.E.: Abraham, J.: Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. Phys. Rev. E 71, 036701 (2005)CrossRefGoogle Scholar
  6. 6.
    Ansumali S., Karlin I.V.: Stabilization of the lattice Boltzmann method by the H-theorem: a numerical test. Phys. Rev. E 62, 7999–8003 (2000)CrossRefGoogle Scholar
  7. 7.
    Ansumali S., Karlin I.V., Ottinger H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003)CrossRefGoogle Scholar
  8. 8.
    Geier, M.C.: Ab initio derivation of the cascade lattice Boltzmann automation. PhD thesis, University of Freiburg (2003)Google Scholar
  9. 9.
    Ricot D., Marié S., Sagaut P., Bailly C.: Lattice Boltzmann method with selective viscosity filter. J. Comput. Phys. 228, 4478–4490 (2009)CrossRefMATHGoogle Scholar
  10. 10.
    Nannelli F., Succi S.: The lattice Boltzmann equation on irregular lattices. J. Stat. Phys. 68, 401–407 (1992)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Breuer M., Bernsdorf J., Zeiser T., Durst F.: Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite volume. Int. J. Heat Fluid Flow 21, 186–196 (2000)CrossRefGoogle Scholar
  12. 12.
    d’Humieres D., Ginzburg I., Krafczyk M., Lallemand P., Luo L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R Soc. Lond. A 360, 437–451 (2002)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Azwadi N., Sidik C., Sahat I.M.: Finite difference and cubic interpolated profile lattice Boltzmann method for prediction of two-dimensional lid-driven shallow cavity flow. Arab. J. Sci. Eng. 37, 1101–1110 (2012)CrossRefGoogle Scholar
  14. 14.
    Azwadi N., Sidik C., Abdul Munir F.: Mesoscale numerical prediction of fluid flow in a shear driven cavity. Arab. J. Sci. Eng. 37, 1723–1735 (2012)CrossRefGoogle Scholar
  15. 15.
    He X., Doolen G.: Lattice Boltzmann method on a curvilinear coordinate system: vortex shedding behind a circular cylinder. Phys. Rev. E 56, 434–440 (1997)CrossRefGoogle Scholar
  16. 16.
    Yu D., Mei R., Shyy W.: A multi-block lattice Boltzmann method for viscous fluid flows. Int. J. Numer. Methods Fluids 39, 99–120 (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Niu X.D., Hyodo S., Suga K., Yamaguchi H.: Lattice Boltzmann simulation of gas flow over micro-scale airfoils. Comput. Fluids 38, 1675–1681 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Chen S., Wang Z., Shan X.W., Doolen G.D.: Lattice Boltzmann computational fluid dynamics in three dimensions. J. Stat. Phys. 68, 379–400 (1992)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Benzi R., Struglia M.V., Tripiccione R.: Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence. Phys. Rev. E 53, 5565–5568 (1996)CrossRefGoogle Scholar
  20. 20.
    Aidun C.K., Clausen J.R.: Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech. 42, 439–472 (2010)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Ladd A.J.C., Verberg R.: Lattice Boltzmann simulations of particle fluid suspensions. J Stat. Phys. 104, 1191–1251 (2001)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Ramachandran S., Sunil Kumar P.B., Pagonabarrag I.: A lattice-Boltzmann model for suspensions of self-propelling colloidal particles. Eur. Phys. J. E 20, 151–158 (2006)CrossRefGoogle Scholar
  23. 23.
    Sankaranarayanan K., Shan X., Devrekidis I.G., Sundaresan S.: Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method. J. Fluid Mech. 452, 61–96 (2002)CrossRefMATHGoogle Scholar
  24. 24.
    Sankaranarayanan K., Kevrekidis I.G., Sundaresan S., Lu J., Tryggvason G.: A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations. Int. J. Multiph. Flow 29, 109–116 (2003)CrossRefMATHGoogle Scholar
  25. 25.
    Aidun C.K., Lu Y.N., Ding E.J.: Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287–311 (1998)CrossRefMATHGoogle Scholar
  26. 26.
    Wu J., Aidun C.K.: Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int. J. Numer. Methods Fluids 62, 765–783 (2010)MATHGoogle Scholar
  27. 27.
    Shan X.: Simulation of Rayleigh–Benard convection using a lattice Boltzmann method. Phys. Rev. E 55, 2780–2788 (1997)CrossRefGoogle Scholar
  28. 28.
    Mezrhab A., Bouzidi M., Lallemand P.: Hybrid lattice-Boltzmann finite-difference simulation of convective flows. Comput. Fluids 33, 623–641 (2005)CrossRefGoogle Scholar
  29. 29.
    Mishra C.S., Lankadasu A., Beronov K.: Application of the lattice Boltzmann method for solving the energy equation of a 2D transient conduction–radiation problem. Int. J. Heat. Mass Transf. 48, 3648–3659 (2005)CrossRefMATHGoogle Scholar
  30. 30.
    Gupta N., Chaitanya G.R., Mishra S.C.: Lattice Boltzmann method applied to variable thermal conductivity conduction and radiation problems. J. Thermophys. Heat Transf. 20, 895–902 (2006)CrossRefGoogle Scholar
  31. 31.
    Succi S., Bella G., Papetti F.: Lattice kinetic theory for numerical combustion. J. Sci. Comput. 12, 395–408 (1997)CrossRefMATHGoogle Scholar
  32. 32.
    Yamamoto K., He X., Doolen G.D.: Simulation of combustion field with lattice Boltzmann method. J. Stat. Phys. 107, 367–383 (2002)CrossRefMATHGoogle Scholar
  33. 33.
    Yamamoto K., He X., Doolen G.D.: Combustion simulation using lattice Boltzmann method. JSME Int. J. 74, 403–409 (2004)Google Scholar
  34. 34.
    Yamamoto K., Takadab N., Misawa M.: Combustion simulation with lattice Boltzmann method in a three-dimensional porous structure. Proc. Combust. Inst. 30, 1509–1515 (2005)CrossRefGoogle Scholar
  35. 35.
    Zarghami A., Ubertini S., Succi S.: Finite volume lattice Boltzmann modeling of thermal transport in nanofluids. Comput. Fluids 77, 56–65 (2013)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Xi H., Peng G., Chou S.H.: Finite-volume lattice Boltzmann method. Phys. Rev. E 59, 6202–6205 (1999)CrossRefGoogle Scholar
  37. 37.
    Zarghami A., Maghrebi M.J., Ubertini S., Succi S.: Modeling of bifurcation phenomena in suddenly expanded flows with a new finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 22, 977–1003 (2011)CrossRefMATHGoogle Scholar
  38. 38.
    Zarghami A., Di Francesco S., Biscarini C.: Porous substrate effects on thermal flows through a REV-scale finite volume lattice Boltzmann model. Int. J. Mod. Phys. C 25, 1350086 (2014)CrossRefGoogle Scholar
  39. 39.
    Zarghami A., Maghrebi M.J., Ghasemi J., Ubertini S.: Lattice Boltzmann finite volume formulation with improved stability. Commun. Comput. Phys. 12, 42–64 (2012)Google Scholar
  40. 40.
    Ghasemi J., Razavi S.E.: On the finite volume lattice Boltzmann modeling of thermo-hydrodynamics. Comput. Math. Appl. 60, 1135–1144 (2010)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Zou Q., He X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1997)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Chen S., Martinez D., Mei R.: On boundary conditions in lattice Boltzmann methods. Phys. Fluids 8, 2527–2536 (1996)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Zarghami, A.; Biscarini, C.; Succi, S.; Ubertini, S.: Hydrodynamics in porous media: a FV-LB study. J. Sci. Comput. doi: 10.1007/s10915-013-9754-4
  44. 44.
    Armaly B.F., Durst F., Pereira J.C.F., Schonung B.: Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473–496 (1983)CrossRefGoogle Scholar
  45. 45.
    Barton I.E.: A numerical study of floe over a confined backward-facing step. Int. J. Numer. Methods Fluids 21, 653–665 (1995)CrossRefMATHGoogle Scholar
  46. 46.
    Guj G., Stella F.: Numerical solutions of high-Re recirculating flows in vorticity-velocity form. Int. J. Numer. Methods Fluids 8, 405–416 (1988)CrossRefMATHGoogle Scholar
  47. 47.
    Erturk E.: Numerical solutions of 2D steady incompressible flow over a backward-facing step, part I: high Reynolds number solutions. Comput. Fluids 37, 633–655 (2008)CrossRefMATHGoogle Scholar
  48. 48.
    Ubertini S., Succi S.: Recent advances of lattice Boltzmann techniques on unstructured grids. Prog. Comput. Fluid Dyn. 5, 85–96 (2005)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Chen C.K., Yen T.S., Yang Y.T.: Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle. Int. J. Heat. Mass Transf. 49, 1195–1204 (2006)CrossRefMATHGoogle Scholar
  50. 50.
    Barber, R.W.; Fonty, A.: A numerical study of laminar flow over a confined backward facing step using a novel viscous-splitting vortex algorithm. In: 4th GRACM Congress, Patras, Greece (2002)Google Scholar
  51. 51.
    Chiang T.P., Sheu T.W.H.: Vortical flow over a 3D backward facing step. Numer. Heat Transf. A 31, 167–192 (1997)CrossRefGoogle Scholar
  52. 52.
    Chiang T.P., Sheu T.W.H.: A numerical revisit of backward-facing step flow problem. Phys. Fluid 11, 862–874 (1999)CrossRefMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2014

Authors and Affiliations

  1. 1.Department of Engineering, Science and Research BranchIslamic Azad UniversityFarsIran

Personalised recommendations