Arabian Journal for Science and Engineering

, Volume 39, Issue 8, pp 5905–5916 | Cite as

Effect of Silicate Content on the Properties of Alkali-Activated Blast Furnace Slag Paste

  • Mohammed Nadeem QureshiEmail author
  • Somnath Ghosh
Research Article - Civil Engineering


The effect of silicate content (SiO2/Na2O) of an activator on physical and mechanical properties of alkali-activated blast furnace slag paste has been investigated. The paste was produced by activating blast furnace slag with sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solution. The SiO2/Na2O ratio varied from 0.2 to 1.2. The test specimens were cast and cured in water (fully immersed condition) at room temperature and the direct compressive strength at the age of 3, 7, 14, 21, 28 days were obtained. It has been observed that the compressive strength and ultrasonic pulse velocity of test specimen increases with the increase in silicate content up to a silicate ratio of 0.8. Compressive strength is found to be a maximum 44.53 MPa at 28 days. It is noticed further that the compressive strength increases with age. It is also observed that the silicate ratio has a significant influence on porosity, water absorption and water sorptivity. The mineralogical and micro-structural changes were studied using XRD and SEM/EDX, while porosity, total pore volume, pore-size distribution, etc., were studied using mercury intrusion porosimetry.


Alkali activation Blast furnace slag Compressive strength Silicate content Scanning electron microscopy Mercury intrusion porosimetry (MIP) XRD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davidovits J.: 5th Global warming international conference, global warming impact on the cement and aggregates industries. World Resour. Rev. 6, 263–278 (1994)Google Scholar
  2. 2.
    Wang S.D., Pu X.C., Scrivener K.L., Pratt P.L.: Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cement Res. 27, 93–102 (1995)CrossRefGoogle Scholar
  3. 3.
    Yang K.H., Song J.K., Ashour A.F., Lee E.T.: Properties of cementless mortars activated by sodium silicate. Construct. Build. Mater. 22(9), 1981–1989 (2008)CrossRefGoogle Scholar
  4. 4.
    ACI-116R, Cement and Concrete Terminology. Reported by ACI Committee 116. American Concrete Institute (2000)Google Scholar
  5. 5.
    Shi, C.; Krivenko, P.V. and Roy, D.: Alkali-Activated Cements and Concrete. Taylor and Francis, Abingdon (2006)Google Scholar
  6. 6.
    Niu, Q; Feng, N.; Yang; Zheng, X.: Effect of superfine slag powder on cement properties. Cement Concrete Res. 32(4), 615–621 (2002)Google Scholar
  7. 7.
    Bakharev T., Sanjayan J.G., Cheng Y.B.: Alkali activation of Australian slag cement. Cement Concrete Res. 29(1), 113–120 (1999)CrossRefGoogle Scholar
  8. 8.
    Brough A.R., Atkinson A.: Sodium silicate based, alkali activated slag mortars: Part 1 Strength, hydration and microstructure. Cement Concrete Res. 32(6), 865–879 (2002)CrossRefGoogle Scholar
  9. 9.
    Roy D.M.: Alkali activated cements: opportunities and challenges. Cement Concrete Res. 29, 249–54 (1999)Google Scholar
  10. 10.
    Krivenko, P.D.: Alkaline cements and concrete. Paper presented at the first International conference in Kiev, Ukraine (1994)Google Scholar
  11. 11.
    Jiang, W.: Alkali-activated cementitious materials: mechanisms, microstructure and properties, Ph.D. Thesis. The Pennslyvania State University, Pennsylvania (1997)Google Scholar
  12. 12.
    Taylor, H.F.W.: Cement Chemistry. Thomas Telford, London (1997)Google Scholar
  13. 13.
    Wang S.D., Scrivener K.L.: 29Si and 27Al NMR study of alkali activated slag. Cement Concrete Res. 33(5), 769–774 (2003)CrossRefGoogle Scholar
  14. 14.
    Song S., Sohn D., Jennings H.M., Mason T.O.: Hydration of alkali activated ground granulated blast furnace slag. J. Mater. Sci. 35, 249–257 (2000)CrossRefGoogle Scholar
  15. 15.
    Qureshi M.N., Ghosh S.: Effect of alkali content on strength and microstructure of GGBFS paste. Global J. Res. Eng. 13(1), 11–19 (2013)Google Scholar
  16. 16.
    Chen W., Brouwers H.: The hydration of slag part 1: reaction models for alkali-activated slag. J. Mater. Sci. 42(2), 428–443 (2007)CrossRefGoogle Scholar
  17. 17.
    Krizan D., Zivanovic B.: Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cement Concrete Res. 32(8), 1181–1188 (2002)CrossRefGoogle Scholar
  18. 18.
    Wang S.D., Scrivener K.L., Pratt P.L.: Factors affecting the strength of alkali activated slag. Cement Concrete Res. 24(6), 1033–1043 (1994)CrossRefGoogle Scholar
  19. 19.
    Xu H., Van Deventer J.S.J.: The geo-polymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59, 247–66 (2000)Google Scholar
  20. 20.
    Palomo A., Grutzeck M.W., Blanco M.T.: Alkali-activated fly ashes, a cement for the future. Cement Concrete Res. 29, 1323–1329 (1999)CrossRefGoogle Scholar
  21. 21.
    Bondar D., Lynsdale C.J., Milestone N.B., Hassani N., Ramezanianpour A.A.: Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cement Concrete Res. 33(2), 251–260 (2011)CrossRefGoogle Scholar
  22. 22.
    Cihangir F., Erç\({\imath}\)kd\({\imath}\) B., Kesimal A., Turan A., Deveci H.: Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Miner. Eng. 30, 33–43 (2012)Google Scholar
  23. 23.
    Bougara A., Lynsdale C., Ezziane K.: Activation of Algerian slag in mortars. Construct. Build. Mater. 23(1), 542–547 (2009)CrossRefGoogle Scholar
  24. 24.
    Qureshi M.N., Ghosh S.: Effect of curing conditions on the compressive strength and microstructure of alkali-activated GGBS paste. Int. J. Eng. Sci. Invent. 2(2), 24–31 (2013)Google Scholar
  25. 25.
    Qureshi M.N., Ghosh S.: Effect of fineness on engineering properties of alkali-activated GGBFS paste. Int. J. Appl. Eng. Res. 8(2), 131–146 (2013)Google Scholar
  26. 26.
    Fernández-Jiménez A., Palomo J.G., Puertas F.: Alkali-activated slag mortars: mechanical strength behaviour. Cement Concrete Res. 29(8), 1313–1321 (1999)CrossRefGoogle Scholar
  27. 27.
    Zhong B., Yang N.: Hydration characteristics of water glass-activated slag cement. Bull. Chin. Ceramic Soc. 23(6), 4–8 (1993)Google Scholar
  28. 28.
    Elahi, A.; Khan, Q.U.Z.; Barbhuiya, S.A.; Basheer, P.A.M.; Russell, M.I.: Hydration characteristics of cement paste containing supplementary cementitious materials. Arab. J. Sci. Eng. 37, 535–544 (2012)Google Scholar
  29. 29.
    Qureshi, M.N.; Ghosh S.: Workability and setting time of alkali activated blast furnace slag paste. ASTM Int. J. Adv. Civil Eng. Mater. 2(1) (2013). doi: 10.1520/ACEM20120029
  30. 30.
    Hyung-Seok K., Joo-Won P., Yong-Jun A., Jong-Soo B., Choon H.: Activation of ground granulated blast furnace slag cement by calcined alunite. Mater. Transact. 52(2), 210–218 (2011)CrossRefGoogle Scholar
  31. 31.
    ASTM C1437-07, Standard test method for flow of hydraulic cement mortar, ASTM Standards, ASTM International, West Conshohocken, pp 1–2 (2007)Google Scholar
  32. 32.
    ASTM C 230/C 230M −08, Standard specifications for flow table for use in tests of hydraulic cement, ASTM Standards, ASTM International, West Conshohocken, pp. 1–6 (2008)Google Scholar
  33. 33.
    ASTM C 1585-04: Standard test method for measurement of rate of absorption of water by hydraulic cement concretes. ASTM Standards, ASTM International, West Conshohocken, pp. 1–4 (2004)Google Scholar
  34. 34.
    IS: 13311 (Part 1). Indian standard non-destructive testing of concrete—methods of test. Part 1—ultrasonic pulse velocity. Bureau of Indian Standards, New Delhi, pp. 1–7 (1992)Google Scholar
  35. 35.
    Washburn, E.W.: The dynamics of fluid flow. Phys. Rev. 17(3), 2827–2833 (1921)Google Scholar
  36. 36.
    Sathonsaowaphak A., Chindaprasirt P., Pimraksa K.: Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater. 168, 44–50 (2009)CrossRefGoogle Scholar
  37. 37.
    Shi C., Li Y.: Investigation on some factors affecting the characteristics of alkali phosphorus slag cement. Cement Concrete Res. 19(4), 527–533 (1989)CrossRefGoogle Scholar
  38. 38.
    Yu S., Wang W.: Hardening mechanism of clinker free sodium silicate slag cement. J. Chin. Silicate Soc. 18(2), 104–109 (1990)Google Scholar
  39. 39.
    Zhong B., Yang N.: Hydration characteristics of water glass-activated slag cement. Bull. Chin. Ceramic Soc. 23(6), 4–8 (1993)Google Scholar
  40. 40.
    Lu, P.: Origin and development of microstructure of alkali-BFS-SS paste. 2nd Beijing International Symposium on Cements and Concrete, Beijing, pp. 232–239 (1989)Google Scholar
  41. 41.
    Bondar D., Lynsdale C.J., Milestone N.B., Hassani N., Ramezanianpour A.A.: Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cement Concrete Res. 33(2), 251–260 (2011)CrossRefGoogle Scholar
  42. 42.
    Cincotto, M.A.; Melo, A.A.; Repette, W.L.: Effect of different activators type and dosages and relation to autogenous shrinkage of activated blast furnace slag cement. In: Proceedings of the 11th International Congress on the Chemistry of Cement, Durban, pp. 1878–1887 (2003)Google Scholar
  43. 43.
    Astutiningsih, S.; Liu, Y.: Geopolymerisation of Australian slag with effective dissolution by the alkali. In: Davidovits, J. (ed.) Proceedings of the World Congress Geopolymer, Saint Quentin, pp. 69–73 (2005)Google Scholar
  44. 44.
    Adam, A.A.: Strength and durability properties of alkali activated slag and fly ash based geopoymer concrete, Ph.D. Thesis, RMIT University, Melbourne (2009)Google Scholar
  45. 45.
    Collins F., Sanjayan J.G.: Microcracking and strength development of alkali-activated slag concrete. Cement Concrete Res. 23, 345–352 (2001)CrossRefGoogle Scholar
  46. 46.
    Atis C.D., Belim C., Celik O., Karahan O.: Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Construct. Build. Mater. 23, 548–555 (2009)CrossRefGoogle Scholar
  47. 47.
    Palacious M., Puertas F.: Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cement Concrete Res. 37, 691–702 (2007)CrossRefGoogle Scholar
  48. 48.
    Puertas F., Amat T., Fernandez-Jimenez A., Vazquez T.: Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cement Concrete Res. 33, 2031–2036 (2003)CrossRefGoogle Scholar
  49. 49.
    Winslow D.N., Diamond S.: A mercury porosimetry study of the evolution of porosity in Portland cement. J. Mater. 5((3), 564–585 (1970)Google Scholar
  50. 50.
    Arandigoyen M., Alvarez J.I.: Blended pastes of cement and lime: pore structure and capillary porosity. Appl. Surf. Sci. 252, 8077–8085 (2006)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2014

Authors and Affiliations

  1. 1.Department of Civil EngineeringJadavpur UniversityKolkataIndia
  2. 2.Government PolytechnicKhamgaonIndia

Personalised recommendations