Advertisement

Arabian Journal for Science and Engineering

, Volume 39, Issue 1, pp 311–324 | Cite as

Sediment Composition and Provenance of the Pab Formation, Kirthar Fold Belt, Pakistan: Signatures of Hot Spot Volcanism, Source Area Weathering, and Paleogeography on the Western Passive Margin of the Indian Plate During the Late Cretaceous

  • Muhammad Umar
  • Henrik Friis
  • Abdul Salam Khan
  • Gilbert Kelling
  • Akhtar Muhammad Kassi
  • Muhammad Amjad Sabir
  • Muhammad Farooq
Research Article - Earth Sciences

Abstract

Petrographic and geochemical data collected from the Pab Formation, a late Cretaceous clastic sequence exposed in the Kirthar Range of western Pakistan, yield important clues about the influence of the varied source regimes, transportation routes and volcanic input that have influenced the composition of sediments comprising this formation. Detrital compositional modes, petrotectonic discrimination diagrams and paleocurrent data all demonstrate that the Pab sands were ultimately derived from granitic–gneissic terranes forming the Indian Craton, exposed to the E and SE of the study area, with probable supplementary contribution from the mature, ancient sedimentary cover of the craton. These data also confirm that the two contemporaneous depositional systems operating during accumulation of the Pab Formation in this area were supplied from somewhat different sources and through different routes. Sediments deposited in the Central Kirthar sub-basin were derived from the East, while coeval deposits within the Southern Kirthar sub-basin were supplied from SSE and include relatively fresh volcanic detritus that is interpreted as the product of the major Deccan Trap volcanic episode, initiated during late Maastrichtian times. Moreover, geochemical indicators demonstrate that the ultimate composition of Pab sediments has been strongly influenced by intense chemical weathering, associated with warm/humid climatic conditions in the source areas, accompanied by significant diagenetic effects.

Keywords

Sediment composition Provenance Weathering Paleoclimate Hot spot volcanism Diagenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jin Z., Li F., Cao J., Wang S., Yu J.: Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting and catchment weathering. Geomorphology 80, 147–163 (2006)CrossRefGoogle Scholar
  2. 2.
    Chenarai P.: Paleocurrent analyses of the Sua Khua Formation, Khorat Group, Nong Bua Lamphu region, NE Thailand. Arab. J. Sci. Eng. 37, 115–120 (2012)CrossRefGoogle Scholar
  3. 3.
    Dickinson, W.R.; Beard, L.S.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, F.; Knepp, R.A.; Lindberg, F.A.; Ryberg, P.T.: Provenance of North American Phanerozoic sandstone in relation to tectonic setting. Geol. Soc. Am. Bull. 83, 222–235 (1983)Google Scholar
  4. 4.
    Dickinson, W.R.: Interpreting provenance relations from detrital modes of sandstone. In: Zuffa, G.G. (ed.) Provenance of Arenites. Advanced Study Institute Series 148, pp. 333–361. Reidel, Dordrecht (1985)Google Scholar
  5. 5.
    Basilios, T.; Piper, G.P.; David J.W.; Piper, D.J.W.; Schaffer, M.: Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sediment. Geol. 237, 150–165 (2011)Google Scholar
  6. 6.
    Stefani C., Fellin M.G., Zattin M., Zuffa G.G., Dalmonte N.M., Zanferrari A.: Provenance and paleogeographic evolution in a multi-source foreland: the Cenozoic Venetian–Friulian Basin (NE Italy). J. Sediment. Res. 77(11), 867–887 (2007)CrossRefGoogle Scholar
  7. 7.
    Marenssi S.A., Net L.I., Santillana S.N.: Provenance, environmental and paleogeographic controls on sandstone compositions in an incised-valley system: the Eocene La Meseta Formation, Seymour Island, Antarctica. Sediment. Geol. 150(3), 301–321 (2002)CrossRefGoogle Scholar
  8. 8.
    Taj, R.J.; Mesaed, A.A.: Facies Analyses and depositional environments of Ash Shumaysi Formation (Oligocene–Miocene), Makkah Quadrangle Wadi Ash Shumaysi, west central Arabian Shield, Saudi Arabia. Arab. J. Sci. Eng. 37, 1459-1482 (2012)Google Scholar
  9. 9.
    McBride E.F.: Diagenesis of the Maxon Sandstone (Early Cretaceous), Marathon Region, Texas: a diagenetic quartzarenite. J. Sediment. Res. 57(1), 98–107 (1987)Google Scholar
  10. 10.
    Suttner L.J., Basu A., Mack G.H.: Climate and origin of quartz arenites. J. Sediment. Petrol. 51(4), 1235–1246 (1981)Google Scholar
  11. 11.
    Umazano, A.M.; Bellosi, E.S.; Visconti, G.; Jalfin, A.G.; Melchor, R.N.: Sedimentary record of a Late Cretaceous volcanic arc in central Patagonia: petrography, geochemistry and provenance of fluvial volcaniclastic deposits of the Bajo Barreal Formation, San Jorge Basin, Argentina. Cretaceous Res. 30, 749–766 (2009)Google Scholar
  12. 12.
    Maslov A.V., Krupenin M.T., Gareeve E.Z.: Lithological, lithochemical and geochemical indicators of Paleoclimate: evidence from Riphean of the Southern Urals. Lithol. Miner. Resour. 38(05), 427–446 (2003)CrossRefGoogle Scholar
  13. 13.
    Joo, Y.J.; Young II, L.; Zhiquiang, B.: Provenance of the Qingshuijian formation (late Carbonifereous), NE China: implication for tectonic processes in the northern margin of North China block. Sediment. Geol. 177, 97–114 (2005)Google Scholar
  14. 14.
    Absar, N.; Raza, M.; Roy, M.; Naqvi, S.M.; Roy, A.K.: Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group. Precambrian Res. 168(3–4), 313–329 (2009)Google Scholar
  15. 15.
    Roddaz M., Debat P., Nikiema S.: Geochemistry of upper Birimian sediments (major and trace elements and Nd–Sr isotopes) and implications for weathering and tectonic setting of the late Palaeoproterozoic crust. Precambrian Res. 159, 197–211 (2007)CrossRefGoogle Scholar
  16. 16.
    Raza M., Bhardwaj V.R., Ahmad A.H.M., Mondal M.E.A., Khan A., Khan M.S.: Provenance and weathering history of Archaean Naharmagra quartzite of Aravalli craton, NW Indian shield: petrographic and geochemical evidence. Geochem. J. 44(5), 331–345 (2010)CrossRefGoogle Scholar
  17. 17.
    Taylor, S.R.; McLennan, S.M.: The Continental Crust: Its Composition and Evolution. Geol. Mag. 122, 673–674 (1985)Google Scholar
  18. 18.
    Cox R., Lowe D.R., Cullers R.L.: The influence of sediments recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. et Cosmochim Acta 59, 2919–2940 (1995)CrossRefGoogle Scholar
  19. 19.
    Nesbitt H.W., Young G.M.: Earth Proterozoic climates and plate motion inferred from major element chemistry of lutites. Nature 299, 715–717 (1982)CrossRefGoogle Scholar
  20. 20.
    Suttner L.J., Dutta P.K.: Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. J. Sediment. Petrol. 56(3), 329–345 (1986)Google Scholar
  21. 21.
    Nesbitt, H.W.; Young, G.M.: Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochim. et Cosmochim Acta 48, 1523–1534 (1984)Google Scholar
  22. 22.
    Khan, A.S.; Kelling, G.; Umar, M.; Kassi, A.M.: Depositional environments and reservoir assessment of Late Cretaceous sandstones in the south central Kirthat foldbelt. Pakistan. J. Petrol Geol. 25, 373–406 (2002)Google Scholar
  23. 23.
    Umar, M.; Khan, A.S.; Kelling, G.; Kassi; A.M.: Depositional environments of Campanian–Maastrichtian successionss in the Kirthar Fold Belt, southwest Pakistan: tectonic influences on late Cretaceous sedimentation across the Indian Passive margin. Sediment. geol. 237, 30–45 (2011)Google Scholar
  24. 24.
    Umar, M.; Friis, H.; Khan, A.S.; Kassi, A.M.; Kasi, A.K.: The effects of diagenesis on the reservoir characters in sandstones of the Late Cretaceous Pab Formation, Kirthar Fold Belt, southern Pakistan. J. Asian Earth Sci. 40, 622–635 (2011)Google Scholar
  25. 25.
    Bannert D., Cheema A., Ahmad A., Schaffer U.: The structural development of the Western Pakistan Fold Belt. Pakistan. Geol. J. Hannover 80, 3–60 (1992)Google Scholar
  26. 26.
    Kassi, A.M.; Kelling, G.; Kassi, A.K.; Umar, M.; Khan, A.S.: Contrasting Late Cretaceous–Palaeocene lithostratigraphic successions across the Bibai Thrust, western Sulaiman Thrust Belt, Pakistan: their significance in deciphering the early-collisional history of the NW Indian Plate margin. J. Asian Earth Sci. 35, 435–444 (2009)Google Scholar
  27. 27.
    Scotese C.R., Cahagan L.M., Larson R.L.: Plate tectonic reconstructions of the Cretaceous–Cenozoic ocean basins. Tectonophysics 155, 27–48 (1988)CrossRefGoogle Scholar
  28. 28.
    Gnos E., Khan M., Mehmood K., Khan A.S., Shafique N.A., Villa I.M.: Bela oceanic lithoshere assemblage and its relation to the Reunion hotspot. Terra Nova 10(2), 90–95 (1998)CrossRefGoogle Scholar
  29. 29.
    Anwar, A., Fatmi, A.N., Hyderi, I.H.: Revised nomenclature and stratigraphy of Ferozabad, Alozai and Mona Jhal Groups of Balochistan (Axial Belt), Pakistan. Acta Minerol. Pak. 5, 46–61 (1991)Google Scholar
  30. 30.
    Zuffa, G.G.: Optical analysis of arenites: influence of methodology on compositional results. In Zuffa, G.G. (ed.) Provenance of arenites. Reidel, Dordrecht, 165–189 (1985)Google Scholar
  31. 31.
    Fralick, P.W.; Kronberg, B.I.: Geochemical discrimination of clastic sedimentary rock sources. Sediment. Geol. 113, 111–124 (1997)Google Scholar
  32. 32.
    Nesbitt H.W., Young G.M., McLennan S.M., Keays R.R.: Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol. 104, 525–542 (1996)CrossRefGoogle Scholar
  33. 33.
    Nesbitt, H.W.; Fedo, C.M.; Young, G.M.: Quartz and feldspar stability, steady and non-steady state weathering and petrogenesis of siliciclastic sands and muds. J. Geol. 105, 173–191 (1997)Google Scholar
  34. 34.
    Hurowitz J.A., McLennan S.M.: Geochemistry of Cambro-Ordovician sedimentary rocks of the northeastern United States: changes in sediment sources at the onset of Taconian orogenesis. Geology 113, 571–587 (2005)Google Scholar
  35. 35.
    Anani C.: Sandstone petrology and provenance of the Neoproterozoic Voltaian Group in the southeastern Voltaian Basin, Ghana. Sediment. Geol. 128, 83–98 (1999)CrossRefGoogle Scholar
  36. 36.
    Courtillot, V.; Gallet, Y.; Rocchia, R.; Féraud, G.; Robin, E.; Hofmann, C.; Bhandari, N.; Ghevariya, Z.G.: Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar Area of the Deccan large igneous province. Earth Planet. Sci. Lett. 182, 137–156 (2000)Google Scholar
  37. 37.
    Biswas, S.K.; Thomas, J.: Deccan traps and Indian Ocean volcanism, in Plummer, P.S. (ed.) First Indian Ocean Petroleum Seminar: Seychelles, pp. 187–209. United Nations Department of Technical Co-operation for Development, (1992)Google Scholar
  38. 38.
    Jaeger J.J., Courtillot V., Tapponier P.: Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology, 17, 316–319 (1989)CrossRefGoogle Scholar
  39. 39.
    Courtillot, V.; Besse, J.; Vandamme, D.; Montigny, R.; Jaeger, J.; Cappetta, H.: Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet. Sci. Lett. 80(3–4), 361–374 (1986)Google Scholar
  40. 40.
    Weaver, C.E.: Clays, Muds and Shales. In: Developments in sedimentology, vol. 44, p 819. Elsevier, Amsterdam (1989)Google Scholar
  41. 41.
    Fedo C.M., Young G.M., Nesbitt H.W.: Paleoclimate control on the composition of the Paleoproterozoic Serpent formation, Huronian Supergroup, Canada, a greenhouse to icehouse transition. Precambrian Res. 86, 201–223 (1997)CrossRefGoogle Scholar
  42. 42.
    Pfeilsticker, K.: Paleo-Climate. Institut fur Umveltphysik, Universitate Heidelberg, INF 229, 69120 Heidelberg (June 17, 2006). http://www.iup.uni-heidelberg.de/institut/studium/lehre/Uphysik/uphysik2/paleo_climate.pdf
  43. 43.
    Worden R.H., Morad S.: Clay Minerals in sandstones: controls on formation, distribution and evolution. Int. Assoc. Sedimentol. Spec. Publ. 34, 3–41 (2003)Google Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2013

Authors and Affiliations

  • Muhammad Umar
    • 1
    • 5
  • Henrik Friis
    • 2
  • Abdul Salam Khan
    • 3
  • Gilbert Kelling
    • 4
  • Akhtar Muhammad Kassi
    • 5
  • Muhammad Amjad Sabir
    • 1
  • Muhammad Farooq
    • 1
  1. 1.Department of Earth SciencesCOMSATS Institute of Information TechnologyAbbottabadPakistan
  2. 2.Department of GeoscienceAarhus UniversityAarhusDenmark
  3. 3.Centre of Excellence in MineralogyUniversity of BalochistanQuettaPakistan
  4. 4.School of Physical and Geographical SciencesUniversity of KeeleStaffordshireUK
  5. 5.Department of GeologyUniversity of BalochistanQuettaPakistan

Personalised recommendations