Arabian Journal for Science and Engineering

, Volume 39, Issue 2, pp 685–694 | Cite as

Monotonic Preloading Effect on the Liquefaction Resistance of Chlef Silty Sand: a Laboratory Study

Research Article - Civil Engineering


This paper presents a laboratory study on the influence of monotonic preloading on the liquefaction resistance of Chlef soil using the triaxial apparatus. The study is carried out via a multiple drained monotonic and undrained cyclic tests. The samples were subjected to a static drained loading until an axial strain of 2.25 % (contraction phase), 4.5 % (end of contraction phase) and 9 % (dilatancy phase). For each preloading, cyclic tests have been conducted with different loading amplitudes. The obtained results are highly dependent on preloading amplitude: the liquefaction resistance increases with the application of a preloading during the contraction phase with an axial strain \({\varepsilon _{1} =}\) 2.25 % , decreases when the preloading increases to \({\varepsilon _{1}= 4.5}\) % and reaches a lower resistance than the intact soil when \({\varepsilon _{1 }= 9}\) % (dilatancy phase).


Chlef silty Sand Triaxial test Monotonic loading Cyclic loading Preloading Contraction Dilatancy 

List of Symbols


Specific gravity of the sand


Specific gravity of the fines


Fines content (%)


Effective grain diameter


Mean grain size of host sand


Coefficient of uniformity


Maximum void ratio


Minimum void ratio


Plasticity index (%)


Post consolidation relative density (%)


Index void ratio


Liquid limit


Plastic limit


Pore pressure (kPa)

\({\sigma'_{\rm c}}\)

Initial confining pressure


Skempton’s pore pressure parameter


Excess pore water pressure (kPa)


Excess pore pressure ratio


Cyclic stress ratio \({(q_{\rm m}/2*\sigma_{c}^{\prime})}\)


Cyclic resistance ratio


Number of cycles


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belkhatir M., Arab A., Della N., Hanifi M., Schanz T.: Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. J. CRME (CRAS) 338, 290–303 (2010)MATHGoogle Scholar
  2. 2.
    Finn, W.D.L.; Emery, J.J.; Gupta, Y.P.: A shaking table study of the liquefaction of saturated sands during earthquake. In: Proceedings 3rd European Symposium on Earthquake Engineering, pp. 253–262 (1970)Google Scholar
  3. 3.
    Ishihara K., Okada Y.: Effects of large preshearing on cyclic behaviour of sand. Soils Mech. Found. Eng. 22(3), 109–123 (1982)CrossRefGoogle Scholar
  4. 4.
    Luong M.P.: Phénomène cycliques dans les sols pulvérulents. Revue Française de Géotechnique 10, 39–53 (1980)Google Scholar
  5. 5.
    Wichtmann T., Niemunis A., Triantafyllidis Th., Poblete M.: Correlation of cyclic preloading with the liquefaction resistance. Soil Dyn. Earthq. Eng. 25, 923–932 (2005)CrossRefGoogle Scholar
  6. 6.
    Bouferra R., Shahrour I.: Influence of fines on the resistance to liquefaction of a clayey sand. Ground Improvement 8(1), 1–5 (2004)CrossRefGoogle Scholar
  7. 7.
    Arab A., Shahrour I., Hamoudi S., Lancelot L.: Effet de la fraction des fines sur le comportement d’un sable limoneux”. Revue Française de Géotechnique 122, 37–43 (2008)Google Scholar
  8. 8.
    Della N., Arab A., Belkhatir M., Missoum H.: Identification of the behavior of the Chlef sand to static liquefaction. J. CRME (CRAS) 337, 282–290 (2009)Google Scholar
  9. 9.
    Della, N.; Arab, A.; Belkhatir, M.: Static liquefaction of sandy soil: An experimental investigation into the effects of saturation and initial state. Acta Mechanica 218(1–2), 175–186 (2011)Google Scholar
  10. 10.
    Ishihara K.: Liquefaction and Flow failure during earthquake, 33rd Rankine Lecture. Geotechnique 43(3), 351–415 (1993)CrossRefGoogle Scholar
  11. 11.
    Arab, A.: Comportement des Sols sous Chargement Monotone et Cyclique, Ph.D. dissertation, Univ. of Scienc. and technology of Oran, Oran, Algeria (2008)Google Scholar
  12. 12.
    Shen, C.K.; Vrymoed, J.L.; Uyeno, C.K.: The effect of fines on liquefaction of sands. In: Ninth International Conference on Soil Mechanics and Foundation Engineering, Proceedings, Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo, vol. 2, pp. 381–385, Paper 4/38 (1977)Google Scholar
  13. 13.
    Ishihara, K.; Troncoso, J.; Kawase, Y.; Takahashi,: Cyclic strength characteristics of tailing materials. Soils Found. 23(4), 11–26 (1980)Google Scholar
  14. 14.
    Seed, HB.; Tokimatsu, K.; Harder, Jr L.F.; Chung, RM. (1985) The influence of SPT procedures in soil liquefaction resistance Evaluations. J. Geotech. Eng. ASCE 111(12), 1425–1445Google Scholar
  15. 15.
    Georgiannou, V.N.; Burland, J.B.; Hight, D.W.: The undrained behavior of clayey sands in triaxial compression and extension. Geotechnique 40(3), 431–449 (1990)Google Scholar
  16. 16.
    Erten, D.: Effect of fines content on liquefaction potential of sands. Ph.D, Rutgers the State University of New Jersey-New Brunswick, U.M.I. (1994)Google Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2013

Authors and Affiliations

  1. 1.Laboratory of Materials Sciences and Environment, Civil Engineering DepartmentHassiba Ben Bouali UniversityChlefAlgeria
  2. 2.Laboratory of Civil Engineering and Geo-Environment (LGCgE)University of Lille 1Villeneuve d’AscqFrance

Personalised recommendations