Arabian Journal for Science and Engineering

, Volume 39, Issue 2, pp 669–684 | Cite as

A Modification to SLIC and PLIC Volume of Fluid Models using New Advection Method

Research Article - Civil Engineering

Abstract

In this paper, modified volume of fluid method based on flux correct transport (FCT) and Youngs’ VOF (YV) method using new advection method are presented. These methods are from simple line interface construction and piecewise linear interface construction methods. The developed model in this study is based on the Navier–Stokes equations (NSE) which describe the laminar flow of an incompressible viscous fluid. To model turbulence, the coupled Navier–Stokes and standard k−ɛ model as the Reynolds average NSE are used. These equations are discretized using finite difference method on the Cartesian staggered grids and solved using simplified marker and cell method. The free surface is displaced using the volume of fluid method based on FCT and Youngs’ algorithms. In these methods, for staggered grids, fluxes to neighboring cells are estimated based on cell face velocities. It means that fluid particles in the cell have the same velocity of the cell faces. However, in practice, these particles have a variable velocity between velocities of two adjacent cell faces. In the modified models of this research, the velocity in mass center of fluid cell is estimated and used to calculate fluxes from cell faces. The performance of the modified scheme has been evaluated using a number of alternative schemes taking into account translation, rotation; shear test and dam break on dry bed. Finally, Airy waves are generated by these models. The results showed that the modified models are more accurate than the original ones.

Keywords

Flux correct transport Youngs’ VOF method New advection method Navier–Stokes equations Shear test Error estimation 

Abbreviations

FCT

Flux corrected transport

FDM

Finite difference method

MFCT

Modified flux corrected transport

MYV

Modified Youngs’ VOF

NSE

Navier–Stokes equations

NWT

Numerical wave tank

RANSE

Reynolds average Navier–Stokes equations

SLIC

Simple line interface calculation

SMAC

Simplified marker and cell

SSE

Sum square error

SAE

Sum absolute error

PLIC

Piecewise linear interface construction

TDMA

Three Diagonal Matrix Algorithm

VOF

Volume of fluid

List of Symbols

F

Colour function

gi

Source term including acceleration due to gravity in the i direction

k

Kinetic energy

p

Dynamic pressure

Re

Reynolds number

t

Time

u

Velocity component in the x direction

v

Velocity component in the y direction

ɛ

Dissipation rate

Δt

Time step

Δx

Mesh size in the x direction

Δy

Mesh size in the y direction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burnner B., Tryggavson G.: Direct numerical simulation of three- dimensional bubbly flow. Phys Fluids (Letter) 111, 1967–1969 (1999)CrossRefGoogle Scholar
  2. 2.
    Lafaurie B., Nardone C., Scardovelli R., Zaleski S., Zanetti G.: Modeling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113, 134–147 (1994)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Noh, W.F.; Woodward, P.: SLIC (Simple line Interface Calculation). In: van Dooren, A.I., Baines, M.J. (eds.) Lecture Notes in Physics, vol. 59, pp. 273–285. Springer, New York (1982)Google Scholar
  4. 4.
    Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.: SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries. Technical Report LA-8355, Los Alamos Scientific Laboratory (1980)Google Scholar
  5. 5.
    Torrey, M.D.; Cloutman, L.D.; Hirt, C.W.: NASA-VOF2D: a computer program for incompressible flows with free surface. Technical report LA-10462-MS, Los Alamos Scientific Laboratory (1985)Google Scholar
  6. 6.
    Hirt, C.V.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)Google Scholar
  7. 7.
    Youngs, D.L.: Time-depend multi- material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid dynamics, pp. 273–285. Academic Press, New York (1985)Google Scholar
  8. 8.
    Rudman M.: Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods Fluids 24, 671–691 (1997)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Duff, E.S.: Fluid flows aspects of solidification modeling: simulation of low pressure Die casting. Ph.D. Thesis, University of Queensland, Brisbane (1999)Google Scholar
  10. 10.
    Rider W.J., Kothe B.D.: Reconstructing volume tracking. J. Comput. Phys. 141, 112–152 (1998)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Harvie D.J.E., Fletcher D.F.: A new volume of fluid advection algorithm: the defined donating region scheme. Int. J. Numer. Methods Fluid 35, 151–172 (2001)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Harvie D.J.E., Fletcher D.F.: A new volume of fluid advection algorithm: the stream scheme. J. Comput. Phys. 162, 1–32 (2000)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Geuyffier D., Li J., Nadim A., Scardovelli R., Zaleski S.: Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152, 423–456 (1999)CrossRefGoogle Scholar
  14. 14.
    Scardovelli, R.; Zaleski, S.: NOTE: analytical relations connecting linear interfaces and volume fractions in rectangular grid. J. Comput. Phys. 164, 228–237 (2000)Google Scholar
  15. 15.
    Scardovelli, R.; Zaleski, S.: Interface reconstruction with least-square fit and split Eulerian– Lagrangian advection. Int. J. Numer. Methods Fluids 41, 251–274 (2003)Google Scholar
  16. 16.
    Rafei, R.: Numerical solution of incompressible 3D turbulent flow in a spiral channel. M.Sc. thesis, Amirkabir University of Technology, Iran, Tehran (2004)Google Scholar
  17. 17.
    Li C.W., Zang Y.F.: Simulation of free surface recirculating flows in semi-enclosed water bodies by a kw model. Appl. Math. Model. 22, 153–164 (1998)CrossRefMATHGoogle Scholar
  18. 18.
    Gao, H.; Gu, H.Y.; Guo, L.J.: Numerical study of stratified oil-water two-phase turbulent flow in a horizontal tube. Int. J. Heat Mass Transfer 46, 749–754 (2003)Google Scholar
  19. 19.
    Ren B., Wang Y.: Numerical simulation of random wave slamming on structures in the splash zone. Ocean Eng. 31, 547–560 (2004)CrossRefGoogle Scholar
  20. 20.
    Shen, Y.M.; Ng, C.O.; Zheng, Y.H.: Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k−ɛ turbulence modeling. Ocean Eng. 31, 87–95 (2004)Google Scholar
  21. 21.
    Asadi S., Passandideh-Fard M.: A computational study on droplet impingement onto a thin liquid film. Arab. J. Sci. Eng. 34, 505–517 (2009)Google Scholar
  22. 22.
    Saghi H., Ketabdari M.J., Zamirian M.: A novel algorithm based on parameterization method for calculation of curvature of the free surface flows. Appl. Math. Model. 37, 570–585 (2013)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, 1st edn. Springer Series in Computational Physics (1988)Google Scholar
  24. 24.
    Renouard, D.P.; Seabra-Santos, F.J.; Temperville, A.M.: Experimental study of the generation, damping and reflection of a solitary wave. Dyn. Atm. Oceans 9, 341–358 (1985)Google Scholar
  25. 25.
    Boussinesq M.J.: Théorie de l’intumescence liquide, appelée onde solitaire ou de translation. se propageant dans un canal rectangulaire. C.-R. Acad. Sci. Paris. 72, 755–759 (1871)MATHGoogle Scholar
  26. 26.
    Versteeg, H.K.; Malalaskera, W.: An Introduction to Computational Fluid Dynamics, The Finite Volume Method. Longman, Harlow (1995)Google Scholar
  27. 27.
    Ketabdari, M.J.; Saghi, H.: Large Eddy simulation of laminar and turbulent flow on collocated and staggered grids. ISRN Mech. Eng., vol. 2011, Article ID 809498 (2011). doi: 10.5402/2011/809498
  28. 28.
    Ketabdari, M.J.; Nobari, M.R.H.; Moradi Larmaei, M.: Simulation of waves group propogation and breaking in coastal zone using a Navier–Stokes solver with an improved VOF free surface treatment. Appl. Ocean Res. 30, 130–143 (2008)Google Scholar
  29. 29.
    Nobari, M.R.H.; Ketabdari, M.J.; Moradi Larmaei, M.: A modified volume of fluid advection method for uniform Cartesian grids. Appl. Math. Model. 33, 2298–2310 (2009)Google Scholar
  30. 30.
    Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids: J. Comput. Phys. 31, 335–362 (1979)Google Scholar
  31. 31.
    Ghia, U.; Ghia, K.N.; Shin, C.T.: High-re solutions for incompressible flow using the Navier–Stokes Equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)Google Scholar
  32. 32.
    Nakayama, T.; Washizu, K.: Boundary element analysis of nonlinear sloshing problems. In: Bauerjee, P.K., Mukherjee, S. (eds.) Developments in Boundary Element Method-3. Elsevier Applied Science Publishers, Newyork (1984)Google Scholar
  33. 33.
    Martin, J.C.; Moyce, W.J.: An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans. R. Soc. Lond. 244, 312–324 (1952)Google Scholar
  34. 34.
    Romate, J.E.: Absorbing boundary conditions for free surface waves. Comput. Phys. 99, 135–145 (1992)Google Scholar
  35. 35.
    Dean, R.G.; Darlymple, R.A.: Water wave mechanics for engineers and scientists. In: Advance Series on Ocean Engineering, vol. 2. World scientific publishing Co., Singapore (1991)Google Scholar
  36. 36.
    Sorensen, R.M.: Basic coastal engineering, 3rd edn. In: Library of congress cataloging-in-publication data (2000)Google Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2013

Authors and Affiliations

  1. 1.Faculty of EngineeringFerdowsi UniversityMashhadIran
  2. 2.Faculty of Marine TechnologyAmirkabir University of TechnologyTehranIran

Personalised recommendations