Arabian Journal for Science and Engineering

, Volume 38, Issue 6, pp 1289–1304 | Cite as

Two-Dimensional Nanocrystals: Structure, Properties and Applications

  • Robert J. Young
Review Article - Chemical Engineering


Two-dimensional nanocrystals have been recognised as a new form of matter with unusual physical properties and a number of potential exciting applications. Recent developments in the field of two-dimensional nanocrystals such as the isolation of monolayers of graphene and molybdenum disulphide will be reviewed. The different techniques that have been employed to prepare the materials such as mechanical and solution exfoliation, and chemical vapour deposition are discussed briefly. The characterization method employed to characterise the materials are described and properties of the materials described. Potential engineering applications of the materials in fields such as nanocomposites and catalysis are then discussed.


Graphene Molybdenum disulphide Nanocomposites Catalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geim A.K., Novoselov K.S. (2007) The rise of graphene. Nat. Mater. 6, 183–190CrossRefGoogle Scholar
  2. 2.
    Novoselov K.S. (2011) Nobel Lecture: Graphene: Materials in the flatland. Rev. Mod. Phys. 83, 837–849CrossRefGoogle Scholar
  3. 3.
    Geim A.K. (2011) Nobel Lecture: Random walk to graphene. Rev. Mod. Phys. 83, 851–862CrossRefGoogle Scholar
  4. 4.
    Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. (2004) Electric field effect in atomically thin carbon films. Science 306, 666–669CrossRefGoogle Scholar
  5. 5.
    Peierls, R.E.: Quelques propriétés typiques des corps solides, Ann. I. H. Poincaré 5, 177–222 (1935)Google Scholar
  6. 6.
    Shioyama H. (2001) Cleavage of graphite to graphene. J. Mater. Sci. Lett. 20, 499–500CrossRefGoogle Scholar
  7. 7.
    Geim A.K. (2009) Graphene: status and prospects. Science 324, 1530–1534CrossRefGoogle Scholar
  8. 8.
    Avouris P. (2010) Graphene: Electronic and photonic properties and devices. Nano Lett. 10, 4285–4294CrossRefGoogle Scholar
  9. 9.
    Schwierz F. (2010) Graphene transistors. Nature Nanotechnol. 5, 487–496CrossRefGoogle Scholar
  10. 10.
    Kim, H.; Abdala, A.A.; Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRefGoogle Scholar
  11. 11.
    Young R.J., Kinloch I.A., Gong L., Novoselov K.S. (2012) The mechanics of graphene nanocomposites: A review. Comp. Sci. Technol. 72, 1459–1476CrossRefGoogle Scholar
  12. 12.
    Blake, P.; Brimicombe, P.D.; Nair, R.R.; Booth, T.J.; Jiang, D.; Schedin, F.; Ponomarenko, L.A.; Morozov, S.V.; Gleeson, H.F.; Hill, E.W.; Geim, A.K.; Novoselov, K.S.: Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008)Google Scholar
  13. 13.
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.Y.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’ko, Y.K.; Boland, J.J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A.C.; Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)Google Scholar
  14. 14.
    Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C.A.; He, M.S.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pénicaud, A.: Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802–15804 (2008)Google Scholar
  15. 15.
    Coleman J.N. (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19, 3680–3695CrossRefGoogle Scholar
  16. 16.
    Lotya, M.; Hernandez, Y.; King, P.J.; Smith, R.J.; Nicolosi, V.; Karlsson, L.S.; Blighe, F.M.; De, S.; Wang, Z.; McGovern, I.T.; Duesberg, G.S.; Coleman, J.N.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)Google Scholar
  17. 17.
    Lotya M., King P.J., Khan U., De S., Coleman J.N. (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162CrossRefGoogle Scholar
  18. 18.
    van Bommel, A.J.; Crombeen, J.E.; Vantooren, A.: LEED and Auger-electron observations of SiC (0001) surface. Surf. Sci. 48, 463–472 (1975)Google Scholar
  19. 19.
    Wintterlin, J.; Bocquet, M.-L.: Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009)CrossRefGoogle Scholar
  20. 20.
    Kim, K.S.; Zhao, Y.; Jang,H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)Google Scholar
  21. 21.
    Li, X.S.; Cai, W.W.; An, J.H.; Kim, S.Y.; Nah, J.H.; Yang, D.X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E;. Banerjee, S.K.; Colombo, L.; Ruoff R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)Google Scholar
  22. 22.
    Li X.S., Cai W.W., Colombo L., Ruoff R.S. (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272CrossRefGoogle Scholar
  23. 23.
    Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S.: Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011)Google Scholar
  24. 24.
    Li, X.S.; Magnuson, C.W.; Venugopal, A.; Tromp, R.M.; Hannon, J.B.; Vogel, E.M.; Colombo, L.; Ruoff, R.S.: Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011)Google Scholar
  25. 25.
    Bae, S.; Kim, H.K.; Lee, Y.B.; Xu, X.F.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I.; Kim, Y.-J.; Kim, K.S.; Özyilmaz, B.; Ahn, J.-H.; Hong, B.H.; Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)Google Scholar
  26. 26.
    Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)Google Scholar
  27. 27.
    Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)Google Scholar
  28. 28.
    Poncharal, P.; Ayari, A.; Michel, T.; Sauvajo, J.-L.: Raman spectra of misoriented bilayer graphene. Phys. Rev. B 78, 113407 (2008)Google Scholar
  29. 29.
    Hao, Y.F.; Wang, Y.Y.; Wang, L.; Ni, Z.H.; Wang, Z.Q.; Wang, R.; Koo, C.K.; Shen, Z.X.; Thong, J.T.L.: Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6, 195–200 (2010)Google Scholar
  30. 30.
    Meyer J.C., Geim A.K., Katsnelson M.I., Novoselov K.S., Booth T.J., Roth S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)CrossRefGoogle Scholar
  31. 31.
    Booth T.J., Blake P., Nair R.R., Jiang D., Hill E.W., Bangert U., Bleloch A., Gass M., Novoselov K.S., Katsnelson M.I., Geim A.K.: Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 8, 2442–2446 (2008)CrossRefGoogle Scholar
  32. 32.
    Meyer J.C., Kisielowski C., Erni R., Rossell M.D., Crommie M.F. Zettl A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 2582–2586 (2008)CrossRefGoogle Scholar
  33. 33.
    Gass M.H., Bangert U., Bleloch A.L., Wang P., Nair R.R., Geim A.K.: Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676–681 (2008)CrossRefGoogle Scholar
  34. 34.
    Bangert U., Gass M.H., Bleloch A.L., Nair R.R., Geim A.K.: Manifestation of ripples in free-standing graphene in lattice images obtained in an aberration-corrected scanning transmission electron microscope. Phys. Status Solidi A 206, 1117–1122 (2009)CrossRefGoogle Scholar
  35. 35.
    Bangert U., Gass M.H., Bleloch A.L., Nair R.R., Eccles J.: Nanotopography of graphene. Phys. Status Solidi A 206, 2115–2119 (2009)CrossRefGoogle Scholar
  36. 36.
    Zan R., Bangert U., Ramasse Q., Novoselov K.S.: Imaging of Bernal stacked and misoriented graphene and boron nitride: experiment and simulation. J. Micros. 244, 152–158 (2011)CrossRefGoogle Scholar
  37. 37.
    Kotakoski, J.; Krasheninnikov, A.V.; Kaiser, U.; Meyer, J.C.: From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011)Google Scholar
  38. 38.
    Lee Z., Meyer J.C., Rose H., Kaiser U.: Optimum HRTEM image contrast at 20 kV and 80 kV—exemplified by graphene. Ultramicros 112, 39–46 (2012)CrossRefGoogle Scholar
  39. 39.
    Lee C., Wei X.D., Kysar J.W., Hone J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  40. 40.
    Liu F., Ming P.B., Li J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007)CrossRefGoogle Scholar
  41. 41.
    Blakslee O.L., Proctor D.G., Seldin E.J., Spence G.B., Weng T.: Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970)CrossRefGoogle Scholar
  42. 42.
    Balandin A.A., Ghosh S., Bao W.Z., Calizo I., Teweldebrhan D., Miao F., Lau C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  43. 43.
    Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)Google Scholar
  44. 44.
    Ghosh S., Bao W.Z., Nika D.L., Subrina S., Pokatilov E.P., Lau C.N., Balandin A.A.: Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010)CrossRefGoogle Scholar
  45. 45.
    Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)Google Scholar
  46. 46.
    Sofo J.O., Chaudhari A.S., Barber G.D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B, 75, 153401 (2007)CrossRefGoogle Scholar
  47. 47.
    Elias, D.C.; Nair, R.R.; Mohiuddin, T.M.G.; Morozov, S.V.; Blake, P.; Halsall, M.P.; Ferrari, A.C.; Boukhvalov, D.W.; Katsnelson, M.I.; Geim, A.K.; Novoselov, K.S.: Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 323, 610–613 (2009)Google Scholar
  48. 48.
    Watanabe, N.; Nakajima, T.; Touhara, H.: Graphite Fluorides. Elsevier, Amsterdam (1988)Google Scholar
  49. 49.
    Worsley K.A., Ramesh P., Mandal S.K., Niyogi S., Itkis M.E., Haddon R.C.: Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445, 51–56 (2007)CrossRefGoogle Scholar
  50. 50.
    Cheng, S.H.; Zou, K.; Okino, F.; Gutierrez, H.R.; Gupta, A.; Shen,N.; Eklund, P.C.; Sofo, J.O.; Zhu, J.: Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81, 205435 (2010)Google Scholar
  51. 51.
    Nair, R.R.; Ren, W.C.; Jalil, R.; Riaz, I.; Kravets, V.G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A.S.; Yuan, S.J.; Katsnelson, M.I.; Cheng, H.-M.; Strupinski, W.; Bulusheva, L.G.; Okotrub, A.V.; Grigorieva, I.V.; Grigorenko, A.N.; Novoselov, K.S.; Geim, A.K.: Fluorographene: a two-dimensional counterpart of Teflon. Small 6, 2877–2884 (2010)Google Scholar
  52. 52.
    Şahin, H.; Topsakal, M.; Ciraci, S.: Structures of fluorinated graphene and their signatures. Phys. Rev. B 83, 115432 (2011)Google Scholar
  53. 53.
    Jeon, K.-J.; Lee, Z.H.; Pollak, E.; Moreschini, L.; Bostwick, A.; Park, C.-M.; Mendelsberg, R.; Radmilovic, V.; Kostecki, R.; Richardson, T.J.; Rotenberg, E.: Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano 5, 1042–1046 (2011)Google Scholar
  54. 54.
    Brodie B.C.: On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859)CrossRefGoogle Scholar
  55. 55.
    Staudenmaier L.: Verfahren zur Darstellung der Graphitsäure, Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898)CrossRefGoogle Scholar
  56. 56.
    Hummers, W.S.; Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)Google Scholar
  57. 57.
    Park S.J., Ruoff R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)CrossRefGoogle Scholar
  58. 58.
    Dreyer D.R., Park S.J., Bielawski C.W., Ruoff R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRefGoogle Scholar
  59. 59.
    Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.Y.; Wu, Y.; Nguyen, S.-T.; Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)Google Scholar
  60. 60.
    Li D. Muller M.B., Gilje S., Kaner R.B., Wallace G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)CrossRefGoogle Scholar
  61. 61.
    Schniepp, H.C.; Li, J.L.; McAllister, M.J.; Sai, H.; Herrera-Alonso, M.; Adamson, D.H.; Prud’homme, R.K.; Car, R.; Saville, D.A.; Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)Google Scholar
  62. 62.
    McAllister, M.J.; Li, J.L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007)Google Scholar
  63. 63.
    Wilson, N.R.; Pandey, P.A.; Beanland, R.; Young, R.J.; Kinloch, I.A.; Gong, L.; Liu, Z.; Suenaga, K.; Rourke, J.P.; York, S.J;. Sloan, J.: Graphene Oxide: Structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3, 2547–2556 (2009)Google Scholar
  64. 64.
    Rourke, J.P.; Pandey, P.A.; Moore, J.J.; Bates, M.; Kinloch, I.A.; Young, R.J.; Wilson, N.R.: The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets. Angew. Chemie Int. Edn. 50, 3173–3177 (2011)Google Scholar
  65. 65.
    Thomas H.R., Vallés C., Young R.J., Kinloch I.A., Wilson N.R., Rourke J.P.: Identifying the fluorescence of graphene oxide. J. Mater. Chem. C 1, 338–342 (2013)CrossRefGoogle Scholar
  66. 66.
    Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; Shvets, I.V.; Arora, S.K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G.T.; Duesberg, G.S.; Hallam, T.; Boland, J.J.; Wang, J.J.; Donegan, J.F.; Grunlan, J.C.; Moriarty, G.; Shmeliov, A.; Nicholls, R.J.; Perkins, J.M.; Grieveson, E.M.; Theuwissen, K.; McComb, D.W.; Nellist, P.D.; Nicolosi, V.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 569–571 (2011)Google Scholar
  67. 67.
    Joensen, P.; Frindt, R.F.; Morrison, S.R.: Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986)Google Scholar
  68. 68.
    Divigalpitiya W.M.R., Frindt R.F., Morrison S.R.: Inclusion systems of organic molecules in restacked single-layer molybdenum disulfide. Science 246, 369–371 (1989)CrossRefGoogle Scholar
  69. 69.
    Divigalpitiya W.M.R., Morrison S.R, Frindt R.F.: Thin oriented films of molybdenum disulphide. Thin Solid Films 186, 177–192 (1990)CrossRefGoogle Scholar
  70. 70.
    Yang, D.; Jimenez Sandoval, S.; Divigalpitiya, W.M.R.; Irwin, J.C.; Frindt, R.F.: Structure of single-molecular-layer MoS2. Phys. Rev. B 43, 12053 (1991)Google Scholar
  71. 71.
    Divigalpitiya, W.M.R.; Frindt, R.F.; Morrison, S.R.: Molecular composite films of MoS2 and styrene. J. Mater. Res. 6, 1103–1107 (1991)Google Scholar
  72. 72.
    Marseglia E.A.: Transition metal dichalcogenides and their intercalates. Int. Rev. Phys. Chem. 3, 177–216 (1983)CrossRefGoogle Scholar
  73. 73.
    Wilson J.A., Yoffe A.D.: Transition metal dichalcogenides discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969)CrossRefGoogle Scholar
  74. 74.
    Liu, K.-L.; Zhang, W.J.; Y.-H.; Lin, Y.-C.; Chang, M.T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.M.; Zhang, H.; Lai, C.-S.; Li, L.-J.: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012)Google Scholar
  75. 75.
    Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V. V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. PNAS 102, 10451–10453 (2005)Google Scholar
  76. 76.
    Rice, C.; Young, R.J.; Bangert, U.; Zan, R.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K.S.: Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. Lett. B 87, 081307(R) (2013)Google Scholar
  77. 77.
    Mak, K.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)Google Scholar
  78. 78.
    Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)Google Scholar
  79. 79.
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)Google Scholar
  80. 80.
    Wang Q.H., Kalantar-Zadeh K., Kis A., Coleman J.N., Strano M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–710 (2012)CrossRefGoogle Scholar
  81. 81.
    Britnell, L.; Gorbachev, R.V.; Jalil, R.; Belle, B.D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M.I.; Eaves, L.; Morozov, S.V.; Peres, N.M.R.; Leist, J.; Geim, A.K.; Novoselov, K.S.; Ponomarenko, L.A.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012)Google Scholar
  82. 82.
    Castellanos-Gomez, A.; Poot, M.; Steele, G.A.; van der Zant, H.S.J.; Agraït, N.; Rubio Bollinger, G.: Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012)Google Scholar
  83. 83.
    Gong L., Kinloch I.A., Young R.J., Riaz I., Jalil R., Novoselov K.S.: Interfacial stress transfer in a graphene monolayer nanocomposite. Adv. Mater. 22, 2694–2697 (2010)CrossRefGoogle Scholar
  84. 84.
    Young R.J., Gong L., Kinloch I.A., Riaz I., Jalil R., Novoselov K.S.: Strain mapping in a graphene monolayer nanocomposite. ACS Nano 5, 3079–3084 (2011)CrossRefGoogle Scholar
  85. 85.
    Gong L., Young R.J., Kinloch I.A., Riaz I., Jalil R., Novoselov K.S.: Optimizing the reinforcement of polymer-based nanocomposites by graphene. ACS Nano 6, 2086–2095 (2012)CrossRefGoogle Scholar
  86. 86.
    Ni, Z.H.; Yu, T.; Lu, Y.H.; Wang, Y.Y.; Feng, Y.P.; Shen, Z.X.: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008)Google Scholar
  87. 87.
    Yu T., Ni Z.H., Du C.L., You Y.M., Wang Y.Y., Shen Z.X.: Raman mapping investigation of graphene on transparent flexible substrate: the strain effect. J. Phys. Chem. C 112, 12602–12605 (2008)CrossRefGoogle Scholar
  88. 88.
    Huang, M.Y.; Yan, H.; Chen, C.Y.; Song, D.H.; Heinz, T.F.; Hone, J.: Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. 106, 7304–7308 (2009)Google Scholar
  89. 89.
    Mohiuddin, T.M.G.; Lombardo, A.; Nair, R.R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D.M; Galiotis, C.; Marzari, N.; Novoselov, K.S.; Geim, A.K.; Ferrari, A.C.: Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009)Google Scholar
  90. 90.
    Huang Y.L., Young R.J.: Analysis of the fragmentation test for carbon-fiber epoxy model composites by means of Raman-spectroscopy. Compos. Sci. Technol. 52, 505–517 (1994)CrossRefGoogle Scholar
  91. 91.
    Huang Y., Young R.J.: Interfacial behavior in high-temperature cured carbon fibre/epoxy resin model composite. Compos. A Appl. Sci. Man. 26, 541–550 (1995)Google Scholar
  92. 92.
    Huang Y.L., Young R.J.: Interfacial micromechanics in thermoplastic and thermosetting matrix carbon fibre composites. Compos. A Appl. Sci. Man. 27 973–980 (1996)CrossRefGoogle Scholar
  93. 93.
    van den Heuvel, P.W.J.; Peijs, T.; Young, R.J.: Failure phenomena in two-dimensional multi-fibre microcomposites. 2. A Raman spectroscopic study of the influence of inter-fibre spacing on stress concentrations. Compos. Sci. Technol. 57, 899–911 (1997)Google Scholar
  94. 94.
    Montes-Moran M.A., Martinez-Alonso A., Tascon J.M.D., Young R.J.: Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres. Compos. A Appl. Sci. Man. 32, 361–371 (2001)CrossRefGoogle Scholar
  95. 95.
    Cooper C.A., Young R.J., Halsall M.: Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. A Appl. Sci. Man. 32, 401–411 (2001)CrossRefGoogle Scholar
  96. 96.
    Kannan, P.; Eichhorn, S.J.; Young, R.J.: Deformation of isolated single-wall carbon nanotubes in electrospun polymer nanofibres. Nanotechnology 18, 235707 (2007)Google Scholar
  97. 97.
    Cu S., Kinloch I.A., Young R.J., Noé L., Monthioux M.: The effect of stress transfer within double-walled carbon nanotubes upon their ability to reinforce composites. Adv. Mater. 21, 3591–3595 (2009)CrossRefGoogle Scholar
  98. 98.
    Verdejo R., Bernal M.M., Romansanta L.J., Lopez-Manchado M.A.: Graphene filled polymer nanocomposites. J. Mater. Chem. 21, 3301–3310 (2011)CrossRefGoogle Scholar
  99. 99.
    Singh V., Joung D., Zhai L., Das S., Khondaker S.I., Seal S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011)CrossRefGoogle Scholar
  100. 100.
    Kuilla T., Bhadra S., Yao D., Kim N.H., Bose S., Lee J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350–1375 (2010)CrossRefGoogle Scholar
  101. 101.
    Potts J.R., Dreyer D.R., Bielawski C.W., Ruoff R.S.: Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)CrossRefGoogle Scholar
  102. 102.
    Terrones, M.; Martín, O.; González, M.; Pozuelo, J.; Serrano, B.; Juan, C;. Cabanelas, J.C.; Vega-Díaz, S.M.; Baselga, J.: Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv. Mater. 23, 5302–5310 (2011)Google Scholar
  103. 103.
    Khan U., May P., O’Neill A., Coleman J.N.: Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 48, 4035–4041 (2010)CrossRefGoogle Scholar
  104. 104.
    Li Z.L., Young R.J., Kinloch I.A.: Interfacial stress transfer in graphene oxide nanocomposites. ACS Appl. Mater. Inter. 5, 456–463 (2013)CrossRefGoogle Scholar
  105. 105.
    Zhao X., Zhang Q., Chen D.: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43, 2357–2363 (2010)CrossRefGoogle Scholar
  106. 106.
    Cunningham, G.; Lotya, M.; McEvoy, N.; Duesberg, G.S.; van der Schoot P.; Coleman, J.N.: Percolation scaling in composites of exfoliated MoS2 filled with nanotubes and graphene. Nanoscale 4, 6260–6264 (2012)Google Scholar
  107. 107.
    O’Neill, A.; Khan, U.; Coleman, J.N.: Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24, 2414–2421 (2012)Google Scholar
  108. 108.
    Seger B., Kamat P.V.: Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. Lett. 113, 7990–7995 (2009)CrossRefGoogle Scholar
  109. 109.
    Shang N., Papakonstantinou P., Wang P., Ravi S., Silva P.: Platinum integrated graphene for methanol fuel cells. J. Phys. Chem. C 114, 15837–15841 (2010)CrossRefGoogle Scholar
  110. 110.
    Scheuermann, G.M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mulhaupt, R.: Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 131, 8262–8270 (2009)Google Scholar
  111. 111.
    He, D.P.; Cheng, K.; Li, H.G.; Peng, T.; Xu, F.; Mu, S.C.; Pan, M.: Highly active platinum nanoparticles on graphene nanosheets with a significant improvement in stability and CO tolerance. Langmuir 28, 3979–3986 (2012)Google Scholar
  112. 112.
    Lim, D.-H.; Wilcox J.: Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J. Phys. Chem. C 116, 3653–3660 (2012)Google Scholar
  113. 113.
    Afanasiev P., Xia G.-F., Berhault G., Jouguet B., Lacroix M.: Surfactant-assisted synthesis of highly dispersed molybdenum sulfide. Chem. Mater. 11, 3216–3219 (1999)CrossRefGoogle Scholar
  114. 114.
    Bollinger, M.V.; Lauritsen, J.V.; Jacobsen, K.W.; Nørskov, J. K.; Helveg, S.; Besenbacher, F.: One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 87, 196803 (2001)Google Scholar
  115. 115.
    Lauritsen, V.; Nyberg, M.; Vang, R.T.; Bollinger, M.V.; Clausen, B.S.; Topsøe, H.; Jacobsen, K.W.; Lægsgaard, E.; Nørskov J.K.; Besenbacher, F.: Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters, Nanotechnology 14, 385–389 (2003)Google Scholar
  116. 116.
    Lauritsen, J.V.; Bollinger, M.V.; Lægsgaard, E.; Jacobsen, K.W.; Nørskov, J.K.; Clausen, B.S.; Topsøe, H.; Besenbacher, F.: Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J. Catal. 221, 510–522 (2004)Google Scholar
  117. 117.
    Lauritsen, J.V.; Nyberg, M.; Nørskov, J.K.; Clausen, B.S.; Topsøe, H.; Lægsgaard, E.; Besenbacher, F.: Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy. J. Catal. 224, 94–106 (2004)Google Scholar
  118. 118.
    Lauritsen J.V., Kibsgaard K., Helveg S., Topsøe H., Clausen B.S., Lægsgaard E., Besenbacher F. (2007) Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2, 53–58CrossRefGoogle Scholar
  119. 119.
    Hinnemann, B.; Moses, P.G.; Bonde, J.; Jørgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.; Nørskov, J.K.: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005)Google Scholar
  120. 120.
    Elizondo-Villarreal N., Velazquez-Castillo R., Galvan D.H., Camacho A., Yacaman M.J. (2007) Structure and catalytic properties of molybdenum sulfide nanoplatelets. Appl. Catal. A Gen. 328, 88–97CrossRefGoogle Scholar
  121. 121.
    Nair R.R., Wu H.A., Jayaram P.N., Grigorieva I.V., Geim A.K. (2012) Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444CrossRefGoogle Scholar
  122. 122.
    Haigh, S.J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D.C.; Novoselov, K.S.; Ponomarenko, L.A.; Geim A.K.; Gorbachev R.: Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012)Google Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2013

Authors and Affiliations

  1. 1.School of MaterialsUniversity of ManchesterManchesterUK
  2. 2.Center for Refining and PetrochemicalsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations