Arabian Journal for Science and Engineering

, Volume 38, Issue 2, pp 329–340 | Cite as

Entropy Generation Minimization, Exergy Analysis, and the Constructal Law

Research Article - Special Issue - Mechanical Engineering

Abstract

This is a review of the evolution of thermodynamics during the past four decades, from classical (engineering) thermodynamics, to thermodynamic optimization, entropy generation minimization, exergy analysis, and most recently the constructal law of design and evolution in nature. The review shows that the first law and the second law refer to systems as “black boxes”, without configuration. Yet, most of the literature in modern thermodynamics is about systems with configuration and about improving the performance of designs. The systems of nature are not black boxes: they have configurations that evolve ceaselessly. To complete the thermodynamics description of nature, the constructal law was added to the first law and the second law. The result is constructal thermodynamics, which unites the animate, inanimate, and engineered systems.

Keywords

Constructal thermodynamics Entropy generation minimization Exergy analysis Constructal law Design in nature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bejan A.: Entropy Generation through Heat and Fluid Flow. Wiley, New York (1982)Google Scholar
  2. 2.
    Bejan A.: Entropy Generation Minimization. CRC Press, Boca Raton (1996)MATHGoogle Scholar
  3. 3.
    Bejan A.: Advanced Engineering Thermodynamics. Wiley, New York (1988)Google Scholar
  4. 4.
    Bejan A.: Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transfer 40, 799–816 (1997)MATHCrossRefGoogle Scholar
  5. 5.
    Bejan A.: Advanced Engineering Thermodynamics. 2nd edn. Wiley, New York (1997)Google Scholar
  6. 6.
    Bejan A., Lorente S.: The constructal law and the thermodynamics of flow systems with configuration. Int. J. Heat Mass Transfer 47, 3203–3214 (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Bejan A.: Advanced Engineering Thermodynamics, 3rd edn. Wiley, Hoboken (2006)Google Scholar
  8. 8.
    Naterer G.F., Camberos J.A.: Entropy-based Design and Analysis of Fluids Engineering Systems. CRC Press, Boca Raton (2008)MATHCrossRefGoogle Scholar
  9. 9.
    Bejan A., Zane P.J.: Design in Nature. Doubleday, New York (2012)Google Scholar
  10. 10.
    Bejan A.: Shape and Structure, From Engineering to Nature. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  11. 11.
    Bejan A., Lorente S.: Design with Constructal Theory. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  12. 12.
    Poirier H.: Une théorie explique l’intelligence de la nature. Sci. Vie 1034, 44–63 (2003)Google Scholar
  13. 13.
    Bejan A., Lorente S.: Constructal theory of generation of configuration in nature and engineering. J. Appl. Phys. 100, 041301 (2006)CrossRefGoogle Scholar
  14. 14.
    Reis A.H.: Constructal theory: from engineering to physics, and how flow systems develop shape and structure. Appl. Mech. Rev. 59, 269–282 (2006)CrossRefGoogle Scholar
  15. 15.
    Bejan A., Lorente S.: The constructal law of design and evolution in nature. Phil. Trans. R. Soc. B 365, 1335–1347 (2010)CrossRefGoogle Scholar
  16. 16.
    Bejan A., Lorente S.: The constructal law and the evolution of design in nature. Physics of Life Reviews 8, 209–240 (2011)CrossRefGoogle Scholar
  17. 17.
    Bejan A., Marden J.H.: The constructal unification of biological and geophysical design. Phys. Life Rev. 6, 85–102 (2009)CrossRefGoogle Scholar
  18. 18.
    Hoppeler H., Weibel E.R.: Scaling functions to body size: theories and facts, special issue. J Exp Biol 208, 1573–1769 (2005)CrossRefGoogle Scholar
  19. 19.
    Paltridge G.W.: Global dynamics and climate. Q. J. R. Meteorol. Soc. 101, 475–484 (1975)CrossRefGoogle Scholar
  20. 20.
    Kleidon A.: Life, Hierarchy, and the thermodynamic machinery of planet earth. Phys. Life Rev. 7, 424–460 (2010)CrossRefGoogle Scholar
  21. 21.
    Bejan A.: Convection Heat Transfer 3rd edn. Wiley, Hoboken (2004)Google Scholar
  22. 22.
    Bejan A.: Street Network Theory of Organization in Nature. J. Adv. Transp. 30, 85–107 (1996)CrossRefGoogle Scholar
  23. 23.
    Bejan A., Merkx G.W.: Constructal Theory of Social Dynamics. Springer, New York (2007)Google Scholar
  24. 24.
    Bejan A., Marden J.H.: Constructing animal locomotion from new thermodynamics theory. Am. Sci. 94, 343–349 (2006)Google Scholar
  25. 25.
    Bejan A.: Constructal self-organization of research: Empire building versus the individual investigator. Int. J. Des. Nat. Ecodyn. 3, 177–189 (2008)CrossRefGoogle Scholar
  26. 26.
    Bejan A., Lorente S., Lee J.: Unifying constructal theory of tree roots, canopies and forests. J. Theor. Biol. 254, 529–540 (2008)CrossRefGoogle Scholar
  27. 27.
    Lorente S., Lee J., Bejan A.: The “flow of stresses” concept: the analogy between mechanical strength and heat convection. Int. J. Heat Mass Transfer 53, 2963–2968 (2010)MATHCrossRefGoogle Scholar
  28. 28.
    Bejan A.: The constructal-law origin of the wheel, size, and skeleton in animal design. Am. J. Phys. 78, 692–699 (2010)CrossRefGoogle Scholar
  29. 29.
    Lotka A.J.: Contribution to the energetics of evolution. Proc. Natl. Acad. Sci. USA 8, 147–151 (1922)CrossRefGoogle Scholar
  30. 30.
    Curzon F.L., Ahlborn B.: Efficiency of a Carnot engine at maximum power. Am. J. Phys. 43, 22–24 (1975)CrossRefGoogle Scholar
  31. 31.
    Odum E.P.: The strategy of ecosystem development. Science 164, 262–270 (1969)CrossRefGoogle Scholar
  32. 32.
    Salamon P., Nitzan A., Andresen B., Berry R.S.: Minimum entropy production and the optimization of heat engines. Phys. Rev. A 21, 2115–2129 (1980)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Bejan A.: Entropy generation minimization: the new thermodynamic of finite-size devices and finite-time processes. J. Appl. Phys 79, 1191–1218 (1996)CrossRefGoogle Scholar
  34. 34.
    Lorente S., Bejan A.: Few large and many small: hierarchy in movement on Earth. Int. J. Des. Nat. Ecodyn. 5, 254–267 (2010)CrossRefGoogle Scholar
  35. 35.
    Bejan A., Lorente S.: La Loi Constructale. L’Harmattan, Paris (2005)Google Scholar
  36. 36.
    Reis A.H., Bejan A.: Constructal theory of global circulation and climate. Int. J. Heat Mass Transfer 49, 1857–1875 (2006)MATHCrossRefGoogle Scholar
  37. 37.
    Bejan A.: The golden ratio predicted: Vision, cognition and locomotion as a single design in nature. Int. J. Des. Nat. Ecodyn. 4, 97–104 (2009)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Bejan, A.: Stressing the Science of Engineering, Mechanical Engineering (2011)Google Scholar
  39. 39.
    International Energy Agency. Key World Energy Statistics (2006)Google Scholar
  40. 40.
    Bejan A.: Science and technology as evolving flow architectures. Int. J. Energy Res. 33, 112–125 (2009)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2012

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA

Personalised recommendations