Arabian Journal for Science and Engineering

, Volume 38, Issue 2, pp 317–328 | Cite as

A Review on the Drawbacks of Renewable Energy as a Promising Energy Source of the Future

  • Abbas Azarpour
  • Suardi Suhaimi
  • Gholamreza Zahedi
  • Alireza Bahadori
Research Article - Special Issue - Mechanical Engineering


A common misconception of renewable energy (RE) is that it could serve as a holistic solution to the problems associated with the disreputable but yet reliable fossil fuel and nuclear energy. Energy supply and related environmental problems, especially global warming could be successfully addressed just by switching from the conventional fossil fuel and nuclear energy to purportedly environmental friendly and sustainable renewable sources. But this credence is proved to be a fallacy as RE sources could not meet the demand of energy that is growing globally without posing certain associated problems to human and the environment. RE supply from domestic wind, hydroelectric dam, solar energy, ground-source heat, and biomass waste was proven to be incapable of meeting energy demand. The scale of demand for these resources combined would be highly colossal and there are bound to be problems in integrating massive amounts of intermittent RE into existing supply systems. This paper will discuss problems-related RE (biomass sources, wind, solar, hydropower and geothermal energy combined) from engineering, environment, health and economy perspective.


Renewable energy Wind Geothermal Solar Biomass Source 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fells, I.: The problem. In: Dunderdale, J. (ed.) Energy and the environment. Royal Society of Chemistry, UK (1990)Google Scholar
  2. 2.
    Moriarty P., Honnery D.: What is the global potential for renewable energy? Renew. Sust. Energy Rev. 16, 244–252 (2012)CrossRefGoogle Scholar
  3. 3.
    About 7 Billion & Me. (2012). Accessed 16 June 2012
  4. 4.
    Norton, R.: An overview of a sustainable city strategy. Report Prepared for the Global Energy Assessment Planning for Cities and Municipalities, Montreal, Quebec (1991)Google Scholar
  5. 5.
    Rosen M.A.: The role of energy efficiency in sustainable development. Technol. Soc. 15(4), 21–26 (1996)CrossRefGoogle Scholar
  6. 6.
    Dincer I., Rosen M.A.: A worldwide perspective on energy, environment and sustainable development. Int. J. Energy Res. 22(15), 1305–1321 (1998)CrossRefGoogle Scholar
  7. 7.
    Hartley, D.L.: Perspectives on renewable energy and the environment. In: Tester, J.W., Wood, D.O., Ferrari, N.A. (eds.) Energy and the Environment in the 21st Century. MIT, Massachusetts (1990)Google Scholar
  8. 8.
    Gourieres D.L.: Wind Power Plants Theory and Design. Pergamon Press, Oxford (1982)Google Scholar
  9. 9.
    Billinton R., Gao Y.: Multistate wind energy conversion system models for adequacy assessment of generating systems incorporating wind energy. IEEE Trans. Energy Convers. 23(1), 163–170 (2008)CrossRefGoogle Scholar
  10. 10.
    Karki R., Billinton R.: Reliability/cost implication of PV and wind energy utilization in small isolated power systems. IEEE Trans. Energy Convers. 16(4), 368–373 (2001)CrossRefGoogle Scholar
  11. 11.
    Manco, T., Testa, A.: A Markovian approach to model power availability of a wind turbine. Power Tech. IEEE Lausanne, pp. 1256–1261. Switzerland, 1–5 July 2007Google Scholar
  12. 12.
    Mohandes M., Rehman A.S., Rahman S.M.: Spatial estimation of wind speed. Int. J. Energy Res. 36(4), 545–552 (2012)CrossRefGoogle Scholar
  13. 13.
    Himri Y., Rehman S., Setiawan A.A., Himri S.: Wind energy for rural areas of Algeria. Renew. Sust. Energy Rev. 16, 2381–2385 (2012)CrossRefGoogle Scholar
  14. 14.
    McVicar T.R., Roderick M.L., Donohue R.J., Li L.T., Van Niel T.G., Thomas A., Grieser J., Jhajharia D., Himri Y., Mahowald N.M., Mescherskaya A.V., Kruger A.C., Rehman S., Dinpashoh Y.: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implication for evaporation. J. Hydrol. 417, 182–205 (2012)CrossRefGoogle Scholar
  15. 15.
    Bagiorgas H.S., Mihalakakou G., Rehman S., Al-Hadhrami L.M.: Weibull parameters estimation using four different methods and most energy carrying wind speed analysis. Int. J. Green Energy 8(5), 529–554 (2011)CrossRefGoogle Scholar
  16. 16.
    Mahbub A.M., Rehman S., Meyer J., Al-Hadhrami L.M.: Review of 600kw to 2500kw sized wind turbines and optimization of hub height for maximum wind energy yield realization. Renew. Sust. Energy Rev. 15(1), 3839–3849 (2011)Google Scholar
  17. 17.
    Rehman S., Aftab A., Al-Hadhrami L.M.: Development and economic assessment of a grid connected 20 MW installed capacity wind farm. Renew. Sust. Energy Rev. 15(1), 833–838 (2011)CrossRefGoogle Scholar
  18. 18.
    Ackermann T.: Means to reduce CO2-emissions in the Chinese electricity system, with special consideration to wind energy. Renew. Energy 16, 899–903 (1999)CrossRefGoogle Scholar
  19. 19.
    Wen J., Zheng Y., Donghan F.: A review on reliability assessment for wind power. Renew. Sust. Energy Rev. 13, 2485–2496 (2009)CrossRefGoogle Scholar
  20. 20.
    Kaygusuz K.: Hydropower and world’s energy future. Energy Sour. 26, 215–224 (2004)CrossRefGoogle Scholar
  21. 21.
    Yuksel I.: Hydroelectric power in developing countries. Energy Sour. Part B 4, 377–386 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kaygusuz K.: Sustainable development of hydropower. Energy Sources 24, 803–815 (2002)CrossRefGoogle Scholar
  23. 23.
    Yuksel I.: Hydropower for sustainable water and energy development. Energy Rev. 14, 462–469 (2010)Google Scholar
  24. 24.
    Hopkinson P., James P., Sammut A.: Environmental performance evaluation in the water industry of England and Wales. J. Environ. Plan. Manage. 43(6), 873–895 (2000)CrossRefGoogle Scholar
  25. 25.
    Hasnain S., Elani U.: Solar energy education: a viable pathway for sustainable development. Renew. Energy 14(1–4), 387–392 (1998)CrossRefGoogle Scholar
  26. 26.
    Bourdiros, E.L.: Renewable energy sources education and research as an education for survival. In: Progress in Solar Energy Education, Borlange, Sweden, vol. 1, pp. 12–16 (1991)Google Scholar
  27. 27.
    Hasnain S., Elani U., Alawaji S., Abaoud H., Smiai M.: Prospects and proposals for solar energy education programs. Appl. Energy 52, 307–314 (1995)CrossRefGoogle Scholar
  28. 28.
    EREC. European Renewable Energy Council: Renewable energy target for Europe: 20 % by 2020. Brief Paper, Brussel (2005)Google Scholar
  29. 29.
    ESTIF. European Solar Thermal Industry Federation (ESTIF). Solar thermal markets in Europe, Brussel (2006)Google Scholar
  30. 30.
    Rehman, S., Halawani, T.O.: Global solar radiation estimation. Renew. Energy 12(4), 369–385 (1997)Google Scholar
  31. 31.
    Othman, A., Jakhrani, A., Abidin, W., Zen, H., Baharun, A.: Malaysian government policy. In: C.o.N.R.a.G. Technology (ed.) Renewable Energy: Solar PV System, in World Engineering Congress 2010, 2–5 August 2010. (2010) The Federation of Engineering Institutions of Islamic Countries, Kuching (2010)Google Scholar
  32. 32.
    Rehman S., AL-Hadhrami L.M.: Study of a solar PV–Diesel–Battery hybrid power system for a remotely located population near Rafha, Saudi Arabia. Energy 12, 4986–4995 (2010)CrossRefGoogle Scholar
  33. 33.
    Mohandes M., Rehman S.: Global solar radiation maps of Saudi Arabia, J. Energy Power Eng. 4(12), 57–63 (2010)Google Scholar
  34. 34.
    Rehman S., Mohandes M.: Estimation of diffuse fraction of solar radiation using artificial neural networks. Energy Sour. Part A 31(11), 974–984 (2009)CrossRefGoogle Scholar
  35. 35.
    Rehman S., Mohandes M.: Artificial neural network based estimation of global solar radiation using air temperature and relative humidity. Energy Policy J. 36, 571–576 (2008)CrossRefGoogle Scholar
  36. 36.
    Rehman S., Bader M.A., Moallem S.A.: Cost of solar energy generated using PV panels. Renew. Sust. Energy Rev. 11(8), 1843–1857 (2007)CrossRefGoogle Scholar
  37. 37.
    Rehman S., Shash A.A., Al-Amoudi O.S.B.: Photovoltaic technology of electricity generation for desert camping. Int. J. Glob. Energy Issues 26(2–3), 322 (2006)CrossRefGoogle Scholar
  38. 38.
    Al-Ali A.R., Rehman S., Al-Agili S., Al-Omari M.H., AlFayezi M.: Usage of photovoltaics in automated irrigation system. Renew. Energy 23(1), 17–26 (2001)CrossRefGoogle Scholar
  39. 39.
    Rehman S., Ghori S.G.: Spatial estimation of global solar radiation using geostatistics. Renew. Energy 21(3–4), 583–605 (2000)CrossRefGoogle Scholar
  40. 40.
    Rehman S.: Empirical model development and comparison with existing correlations. Appl. Energy 64(1–4), 369–378 (1999)CrossRefGoogle Scholar
  41. 41.
    Rehman S.: Solar radiation over Saudi Arabia and comparisons with empirical models. Energy 23(12), 1077–1082 (1998)CrossRefGoogle Scholar
  42. 42.
    Rehman, S., Halawani, T.O.: Development and utilization of solar energy in Saudi Arabia: review. Arab. J. Sci. Eng. 23(1B), 33–46 (1998)Google Scholar
  43. 43.
    Kersten S., Wang X., Prins W., van Swaaij W.: Biomass pyrolysis in a fluidized reactor. Part 1(Literature review and model simulations. Ind. Eng. Chem. Res. 44(23), 8773–8785 (2005)Google Scholar
  44. 44.
    Bridgwater A., Meier D., Radlein D.: An overview of pyrolysis of biomass. Org. Geochem. 30(12), 1479–1493 (1999)CrossRefGoogle Scholar
  45. 45.
    Singh J., Gu S.: Biomass conversion to energy in India—a critique. Renew. Sust. Energy Rev. 14(5), 1367–1378 (2010)CrossRefGoogle Scholar
  46. 46.
    Searchinger T., Heimlich R., Houghton R., Dong F., Elobeid A., Fabiosa J.: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008)CrossRefGoogle Scholar
  47. 47.
    Lapola D., Schaldach R., Alcamo J., Bondeau A., Koch J., Koelking C.: Indirect land-use changes can overcome carbon savings from biofuels in Brazil. PNAS 107, 3388–3393 (2010)CrossRefGoogle Scholar
  48. 48.
    IEA (International Energy Agency): Bioenergy: the impact of indirect land use change, summary and conclusions from the workshop on May 12 2009 in Rotterdam, The Netherlands (2009)Google Scholar
  49. 49.
    Schubert, R., Schellnhuber, H., Buchmann, N., Epiney, A., Grießhammer, R., Kulessa, M.: Future bioenergy and sustainable land use, report of the Germand Advisory Council on global change. London, Earthscan (2009)Google Scholar
  50. 50.
    Lee, E., Elsam, R.: Fuelling the Ecological Crisis: Six Examples of Habitat Destruction Driven by Biofuels. BirdLife International, Brussels (2008)Google Scholar
  51. 51.
    Hennenberg K., Dragisic C., Haye S., Hewson J., Hewson J., Hewson J., Hewson J., Hewson J.: The power of bioenergy-related standards to protect biodiversity. Conserv. Biol. 24, 412–423 (2010)CrossRefGoogle Scholar
  52. 52.
    Berndes G.: Bioenergy and water-the implications of large-scale bioenergy production for water use and supply. Glob. Environ. Change. 12, 253–271 (2002)CrossRefGoogle Scholar
  53. 53.
    Gerbens-Leenes P., Hoekstra A., van der Meer T.: The water footprint of bioenergy. PNAS 106, 10219–10223 (2009)CrossRefGoogle Scholar
  54. 54.
    de Fraiture C., Giordano M., Liao Y.: Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy 10, 67–81 (2008)CrossRefGoogle Scholar
  55. 55.
    Tilman D., Socolow R., Foley J., Hill J., Larson E., Lynd L.: Beneficial biofuels: the food, energy, and environment trilemma. Science 325, 270–271 (2009)CrossRefGoogle Scholar
  56. 56.
    Pimentel D., Marklein A., Toth M., Karpoff M., Paul G., McCormack R.: Food versus biofuels: environment and economic costs. Hum. Ecol. 37, 1–12 (2009)CrossRefGoogle Scholar
  57. 57.
    ActionAid.: Meals per gallon: the impact of industrial biofuels on people and global hunger. ActionAid, London (2010)Google Scholar
  58. 58.
    Wolf J., Bindraban P., Luijten J., Vleeshouwers L.: Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agric. Syst. 76, 841–861 (2003)CrossRefGoogle Scholar
  59. 59.
    Cotula, L., Dyer, N., Vermeulen, S.: Fuelling exclusion? The biofuels boom and poor people’s access to land. International Institute for Environment and Development, London (2008)Google Scholar
  60. 60.
    Richert, W., Sielhorst, S.: Uitgangspunten voor Duurzame Biomassa-Deel 1: Risico’ s en kansen van de import van biomassa in Nederland. Report commissioned by Milieudefensie Nederland. AIDEnvironment, Amsterdam (2006)Google Scholar
  61. 61.
    Energy Transition. Biomass, hot issue. Smart choices in difficult times. Report by the Biobased Raw Materials Platform, SenterNovem, Sittard (2008)Google Scholar
  62. 62.
    Demirbas A.: Political, economic and environmental impacts of biofuels: a review. Appl. Energy 86, 108–117 (2009)CrossRefGoogle Scholar
  63. 63.
    Renewable Energy Policy Network for 21st Century (REN21).: Renewables 2011: Global Status Report, 13–14 (2011)Google Scholar
  64. 64.
    Smeets E., Junginger M.W., Faaij A., Lewandowski I., Turkenburg W.: A quick scan of global bio-energy potentials to 2050. Prog. Energy Combust. Sci. 33(1), 56–106 (2007)CrossRefGoogle Scholar
  65. 65.
    Turcotte, D.L., Schubert, G.: Geodynamics. Cambridge University Press, Cambridge (2002)Google Scholar
  66. 66.
    Enrico B.: Geothermal energy technology and current status: an overview. Renew. Sust. Energy Rev. 6, 3–65 (2002)CrossRefGoogle Scholar
  67. 67.
    Glassley, W.E.: Geothermal energy: renewable energy and the environment. CRC Press, Boca Raton (2010)Google Scholar
  68. 68.
    Geothermal Energy Association.: Geothermal energy: international market update, May, p. 7 (2010)Google Scholar
  69. 69.
    Renewable Energy Policy Network for 21st Century (REN21).: Renewables: Global Status Report, p. 15 (2011)Google Scholar
  70. 70.
    Renewable Energy Policy Network for 21st Century (REN21).: Renewables: Global Status Report, Update (2009)Google Scholar
  71. 71.
    Martinot, E., Sawin, J.: Renewables Global Status Report 2009 Update, Renewable Energy World, September 9 (2009)Google Scholar
  72. 72.
    Honnery D., Moriarty P.: Estimating global hydrogen production from wind. Int. J. Hydrogen Energy 34, 727–736 (2009)CrossRefGoogle Scholar
  73. 73.
    Moriarty, P., Honnery, D.: Rise and Fall of the Carbon Civilization. Springer, London (2010)Google Scholar
  74. 74.
    Abbasi S.A., Abbasi N.: The likely adverse environmental impacts of renewable energy sources. Appl. Energy 65, 121–144 (2000)CrossRefGoogle Scholar
  75. 75.
    McCartney, M.: Living with dams: managing the environmental impacts. Water Policy 11(Suppl. 1), 121–139 (2009)Google Scholar
  76. 76.
    Pimentel D., Herz M., Glickstein M., Zimmerman M., Allen R., Becker K. et al.: Renewable energy: current and potential issues. Bioscience 52, 1111–1120 (2002)CrossRefGoogle Scholar
  77. 77.
    Abdillah A., Selaman O.S.: Catchment size, soil type and land use to determine the amount and likelihood of flood in the Sarawak Corridor of Renewable Energy (SCORE) Region. UNIMAS E J. Civil Eng. 1(1), 1–11 (2009)Google Scholar
  78. 78.
    Cho A.: Energy’s tricky tradeoffs. Science 329, 786–787 (2010)CrossRefGoogle Scholar
  79. 79.
    Boyles J.G., Cryan P.M., McCracken G.F., Kunz T.H.: Economic importance of bats in agriculture. Science 332, 41–42 (2011)CrossRefGoogle Scholar
  80. 80.
    Kuvlesky W.P. Jr., Brennan L.A., Morrison M.L., Boydston K.K., Ballard B.M., Bryant F.C.: Wind energy development and wildlife conservation: challenges and opportunities. J. Wildlife Manage. 71(8), 2487–2498 (2007)CrossRefGoogle Scholar
  81. 81.
    Simon C.A.: Cultural constraints on wind and solar energy in the U.S. context. Comp. Technol. Transf. Soc. 7, 251–269 (2009)CrossRefGoogle Scholar
  82. 82.
    Dean W.D.: Wind turbine mechanical vibrations: potential environmental threat. Energy Environ. 19(2), 303–307 (2008)CrossRefGoogle Scholar
  83. 83.
    Kunz T.H., Arnett E.B., Erickson W.P., Hoar A.R., Johnson G.D., Larkin R.P. et al.: Ecological impacts of wind energy development on bats: questions, research needs and hypotheses. Front. Ecol. Environ. 5(6), 315–324 (2007)CrossRefGoogle Scholar
  84. 84.
    Moriarty P., Honnery D.: Liquid fuels from woody biomass. Int. J. Glob. Energy Issues 27(2), 103–114 (2007)CrossRefGoogle Scholar
  85. 85.
    Makarieva A.M., Gorshkov V.G., Li B.L.: Energy budget of the biosphere and civilization: rethinking environmental security of global renewable and nonrenewable resources. Ecol. Complex 5, 281–288 (2008)CrossRefGoogle Scholar
  86. 86.
    Tsoutsos T., Frantzeskaki N., Gekas V.: Environmental impacts from the solar energy technologies. Energy Policy 33, 289–96 (2005)Google Scholar
  87. 87.
    Luque, A., Heguedos, S.: Handbook of Photovoltaic Science and Engineering. Wiley, West Sussex (2003)Google Scholar
  88. 88.
    Kintisch E.: Out of site. Science 327, 788–789 (2010)CrossRefGoogle Scholar
  89. 89.
    Majer E.L., Baria R., Stark M., Oates S., Bommer J., Smith B., Asanuma H.: Induced seismicity associated with enhanced geothermal systems. Geothermics 36, 185–222 (2007)CrossRefGoogle Scholar
  90. 90.
    Swain, A., Chee A.M.: Political structure and ‘Dam’ conflicts: Comparing cases in Southeast Asia. In: Water and Politics: Understanding the Role of Politics in Water Management. World Water Council, Marseilles, pp. 95–114 (2004)Google Scholar
  91. 91.
    Lee, R.: Environmental impacts of energy use. In: Robert Bent, Lloyd, Orr, Baker, Randall (eds.), Energy: Science, Policy, and the Pursuit of Sustainability. Island Press, Washington, pp. 77–108 (2002)Google Scholar
  92. 92.
    Mamit, J.D.: Social and environmental impacts of hydroelectric dam development: the Bakun HEP example in Sarawak, Malaysia. In: Keynote Address presented at Third International Conference on Water and Renewable Energy Development in Asia, Kuching, Sarawak, Malaysia, 29–30 March (2010)Google Scholar
  93. 93.
    Sovacool B.K., Bulan L.C.: Behind an ambitious megaproject in Asia: The history and implications of the Bakun hydroelectric dam in Borneo. Energy Policy 39, 4842–4859 (2011)CrossRefGoogle Scholar
  94. 94.
    Choy K.Y.: Energy demand, economic growth, and energy efficiency: the Bakun Dam-induced sustainable Energy Policy Revisited. Energy Policy 33, 679–689 (2005)CrossRefGoogle Scholar
  95. 95.
    Whish-Wilson P.: The Aral Sea Environmental Health Crisis. J. Rural Remote Environ. Health 1(2), 29–34 (2002)Google Scholar
  96. 96.
    Huang, C.Z.: Guideline for China Flood Control. China Liberation Army Press, China (1998)Google Scholar
  97. 97.
    Stupak I., Asikainen A., Jonsell M., Karltun E., Lunnan A. et al.: Sustainable utilization of forest biomass for energy—possibilities and problems: Policy, legislation, certification, and recommendations and guidelines in the Nordic, Baltic, and other European countries. Biomass Bioenergy 31(10), 666–684 (2007)CrossRefGoogle Scholar
  98. 98.
    Ren, D.: Effects of global warming on wind energy availability. J. Renew. Sust. Energy 2(052301), 5 (2010)Google Scholar
  99. 99.
    Saidur R., Rahim N.A., Islam M.R., Solangi K.H.: Environmental impact of wind energy. Renew. Sust. Energy Rev. 15, 2423–2430 (2011)CrossRefGoogle Scholar
  100. 100.
    Pryor S.C., Barthelmie R.J.: Climate change impacts on wind energy: a review. Renew. Sust. Energy Rev 14, 430–437 (2010)CrossRefGoogle Scholar
  101. 101.
    REN21. Global status report. Paris: REN21 Secretariat; 2005 to 2011 IssuesGoogle Scholar
  102. 102.
    IEA. International Energy Agency Database Vol. 2010, Release 01: (a) Energy Balances of Non-OECD Member Countries; (b) Energy Balances of OECD Member Countries; 2009Google Scholar
  103. 103.
    IEA-PVPS.: Trends in photovoltaic applications: survey report of selected IEA countries between 1992 and 2006. IEA Photovoltaic Power Systems Program (2007)Google Scholar
  104. 104.
    McCluney, R.: Renewable Energy Limits. The Final Energy Crisis. Pluto Press, London (2004)Google Scholar
  105. 105.
    Odum, H.T.: Net Energy Analysis of Alternatives for United States. Part 1, Middle and Long Term Energy Policies and Alternatives. US Government Printing Office, Serial No. 94–63 (1976)Google Scholar
  106. 106.
    U.S. Department of Energy. (2012). Accessed 10 June 2012
  107. 107.
    Muselli M., Notton G., Louche A.: Design of hybrid-photovoltaic power generator, with optimization of energy management. Solar Energy 65(3), 143–157 (1999)CrossRefGoogle Scholar
  108. 108.
    Bagen B.R.: Evaluation of different operating strategies in small stand-alone power systems. IEEE Trans. Energy Convers. 20(3), 654–660 (2005)CrossRefGoogle Scholar
  109. 109.
    Himri Y., Boudghene S.A., Draoui B., Himri S.: Techno-economical study of hybrid power system for a remote village in Algeria. Energy 33, 1128–1136 (2008)CrossRefGoogle Scholar
  110. 110.
    Rehman S., Mahbub A.M., Meyer J.P., Al-Hadhrami L.M.: Feasibility study of a wind–pv–diesel hybrid power system for a village. Renew. Energy 38(1), 258–268 (2012)CrossRefGoogle Scholar
  111. 111.
    Rahman F., Rehman S., Abdul Majeed M.A.: Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia. Renew. Sust. Energy Rev. 16(1), 274–283 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2012

Authors and Affiliations

  • Abbas Azarpour
    • 1
  • Suardi Suhaimi
    • 1
  • Gholamreza Zahedi
    • 1
  • Alireza Bahadori
    • 2
  1. 1.Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and EngineeringUniversiti Teknologi Malaysia, UTM SkudaiJohor BahruMalaysia
  2. 2.School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia

Personalised recommendations