Advertisement

Arabian Journal for Science and Engineering

, Volume 36, Issue 1, pp 39–46 | Cite as

ZnO-Beta Zeolite Catalyzed Solvent-Free Synthesis of Polyhydroquinoline Derivatives Under Microwave Irradiation

  • S. S. Katkar
  • B. R. Arbad
  • M. K. LandeEmail author
Research Article - Chemistry

Abstract

An efficient and environmentally friendly multi-component synthesis of polyhydroquinolines is described. The reaction was catalyzed by zinc modified beta zeolite and performed using microwave irradiation in solvent-free conditions. This reaction was rapid with high yields and a simple workup. The catalyst could be reused several times without significant loss of activity.

Keywords

ZnO-beta zeolite Multi-component reaction Heterogeneous catalyst Microwave irradiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hudlicky T (1996) Design constraints in practical syntheses of complex molecules: current status, case studies with carbohydrates and alkaloids, and future perspectives. Chem Rev 96: 3CrossRefGoogle Scholar
  2. 2.
    Aysola P, Anderson PD, Langford CH (1988) An open vessel, pulse-microwave technique for wet ashing of metal-contaminated animal tissues. Anal Lett 21: 2003Google Scholar
  3. 3.
    Babak K, Kian N (2003) One-pot synthesis of 1,2,4-oxadiazoles mediated by microwave irradiation under solvent-free condition. Heterocycles 60: 2287CrossRefGoogle Scholar
  4. 4.
    Mogilaiah K, Vasudeva RN (2003) Microwave assisted heterocyclization: a rapid and efficient synthesis of 1,8-naphthyridinyl-1,3,4-oxadiazoles. Indian J Chem Sect B 42B: 2124Google Scholar
  5. 5.
    Weng W, Shen J, Huang J, Zeng Q (2002) Chiral discrimination on cellulose and cellulose derivatives. Huaxue Tongbao 65: W043/1Google Scholar
  6. 6.
    Kidwai M, Goel Y, Kumar P (1998) Microwave assisted synthesis of new bioactive 1,3,4-thiadiazolyl substituted 1,3,4-oxadiazoles. Indian J Pharm Sci 60: 396Google Scholar
  7. 7.
    Murray M, Charlesworth D, Swires D, Riby P, Cook J, Chowdhry BZ, Snowden MJ (1994) Microwave synthesis of the colloidal poly(N-isopropylacrylamide) microgel system. J Chem Soc Faraday Trans 90: 1999CrossRefGoogle Scholar
  8. 8.
    Miyazaki S, Yokouchi C, Takada M (1989) External control of drug release. IV. Controlled release of 5-fluorouracil from a hydrophilic polymer matrix by microwave irradiation. Chem Pharm Bull Jpn 37: 208Google Scholar
  9. 9.
    Tse MY, Depew MC, Wan JKS (1990) Applications of high power microwave catalysis in chemistry. Res Chem Intermed 13: 221CrossRefGoogle Scholar
  10. 10.
    Santagada V, Perissutti E, liendo G (2002) The application of microwave irradiation as new convenient synthetic procedure in drug discovery. Curr Med Chem 9: 1251Google Scholar
  11. 11.
    Bossert F, Meyer H, Weighner E (1981) 4-Aryldihydropyridines, a new class of highly active calcium antagonists. Angew Chem Int Ed Engl 20: 762CrossRefGoogle Scholar
  12. 12.
    Nakayama H, Kasoka Y (1996) Chemical identification of binding sites for calcium channel antagonists. Heterocycles 42: 901CrossRefGoogle Scholar
  13. 13.
    Reid JL, Meredith PA, Pasanisi FJ (1985) Clinical pharmacological aspects of calcium antagonists and their therapeutic role in hypertension. J Cardiovasc Pharmacol 7: S18CrossRefGoogle Scholar
  14. 14.
    Godfraind T, Miller R, Wibo M (1986) Calcium antagonism and calcium entry blockade. Pharmacol Rev 38: 321Google Scholar
  15. 15.
    Janis RA, Silver PJ, Triggle DJ (1987) Drug action and cellular calcium regulation. Adv Drug Res 16: 309Google Scholar
  16. 16.
    Mager PP, Coburn RA, Solo AJ, Triggle DJ, Rothe H (1992) QSAR, diagnostic statistics and molecular modeling of 1,4-dihydropyridine calcium channel antagonists: a difficult road ahead. Drug Des Discov 8: 273Google Scholar
  17. 17.
    Manmhold R, Jablonka B, Voigdt W, Schoenafinger K, Schraven E (1992) Calcium- and calmodulin-antagonism of elnadipine derivatives: Comparative SAR. Eur J Med Chem 27: 229CrossRefGoogle Scholar
  18. 18.
    Gaudio AC, Korokovas A, Takahata Y (1994) Quantitative structure-activity relationships for 1,4-dihydropyridine calcium channel antagonists (nifedipine analogues): a quantum chemical/classical approach. J Pharm Sci 83: 1110CrossRefGoogle Scholar
  19. 19.
    Breck DW (1974) Zeolite molecular sieves. Wiley, New YorkGoogle Scholar
  20. 20.
    Dyer A (1988) An introduction to zeolite molecular sieves. Wiley, ChichesterGoogle Scholar
  21. 21.
    Dorado F, Romero R, Canizares P (2002) Hydroisomerization of n-butane over Pd/HZSM-5 and Pd/Hβ with and without binder. Appl Catal A 236: 235CrossRefGoogle Scholar
  22. 22.
    Lingjuan Z, Min L, Xiangmei D, Chunshan S, Xinwen G (2009) Dehydration of 2-(4′-ethylbenzoyl)-benzoic acid to 2-ethylanthraquinone over Hβ zeolite modified with organic acids. Chin J Catal 30:9Google Scholar
  23. 23.
    Djakovitch L, Koehler K (2001) Heck reaction catalyzed by Pd-modified zeolites. J Am Chem Soc 123: 5990CrossRefGoogle Scholar
  24. 24.
    Biscardi JA, Meitzner GD, Iglesia E (1998) Structure and density of active Zn species in Zn/H-ZSM-5 propane aromatization catalysts. J Catal 179: 192CrossRefGoogle Scholar
  25. 25.
    Ono Y (1992) Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites. Catal Rev Sci Eng 34: 179CrossRefGoogle Scholar
  26. 26.
    Hagen A, Roessner F, Krager HG, Weitkamp J (1999) Studies in surface science and catalysis, vol 98. Elsevier, Amsterdam, p 189Google Scholar
  27. 27.
    Onyestak GY, Kallo D, Delmon B, Froment GF (1987) In studies in surface science and catalysis, vol 34. Elsevier, Amsterdam, p 605Google Scholar
  28. 28.
    Onyestak GY, Papp J, Kallo D, Karge HG, Weitkamp J (1989) In studies in surface science and catalysis, vol 46. Elsevier, Amsterdam, The Netherlands, p 24Google Scholar
  29. 29.
    Ko S, Sastry MNV, Lin C, Yao CF (2005) Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett 46: 5771CrossRefGoogle Scholar
  30. 30.
    Maheswara M, Siddaiah V, Damu GLV, Rao CV (2006) An efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation using heterogeneous catalyst under solvent-free conditions. Arkivoc ii: 201Google Scholar
  31. 31.
    Sabitha G, Reddy GSKK, Reddy CS, Yadhav JS (2003) A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Lett 44: 4129CrossRefGoogle Scholar
  32. 32.
    Ko S, Yao CF (2006) Ceric ammonium nitrate (CAN) catalyzed the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron 62: 7293CrossRefGoogle Scholar
  33. 33.
    Karade NN, Budhewar VH, Shinde SV, Jadhav WN (2007) L-proline as an efficient organo-catalyst for the synthesis of polyhydroquinoline via multicomponent Hantzsch reaction. Lett Org Chem 4: 16CrossRefGoogle Scholar
  34. 34.
    Ji SJ, Jiang ZQ, Lu J, Loh TP (2004) Facile ionic liquids-promoted one-pot synthesis of polyhydroquinoline derivatives under solvent free Conditions. Synlett 831Google Scholar
  35. 35.
    Mobinikhaledi A, Foroughifar N, Fard MAB, Moghanian H, Ebrahimi S, Kalhor M (2009) Efficient one-Pot synthesis of polyhydroquinoline derivatives using silica sulfuric acid as a heterogeneous and reusable catalyst under conventional heating and energy-saving microwave irradiation. Synth Commun 39: 1166CrossRefGoogle Scholar
  36. 36.
    Sapkal SB, Shelke KF, Shingate BB, Shingare MS (2009) Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett 50: 1754CrossRefGoogle Scholar
  37. 37.
    Wang LM, Sheng J, Zhang L, Han JW, Fan ZY, Tian H, Qian CT (2005) Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron 61: 1539CrossRefGoogle Scholar
  38. 38.
    Donelson JL, Gibbs RA, De SK (2006) An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch four component condensation. J Mol Catal A Chem 256: 309CrossRefGoogle Scholar
  39. 39.
    Pratap UR, Mali JR, Jawale DV, Mane RA (2009) Bakers’ yeast catalyzed synthesis of benzothiazoles in an organic medium. Tetrahedron Lett 50: 1352CrossRefGoogle Scholar
  40. 40.
    Gordeev MF, Patel DV, Gordon PM (1996) Approaches to combinatorial synthesis of heterocycles: a solid-phase synthesis of 1,4-dihydropyridines. J Org Chem 61: 924CrossRefGoogle Scholar
  41. 41.
    Arumugam P, Perumal PT (2008) Hantzsh synthesis of polyhydroquinolines—simple, efficient and neat protocol. Indian J Chem Sect B 47B: 1084Google Scholar
  42. 42.
    Shen B, Wang P, Yi Z, Zhang W, Tong X, Liu Y, Guo Q, Gao J, Xu C (2009) Synthesis of zeolite β from kaolin and its catalytic performance for FCC naphtha aromatization. Energy Fuels 23: 60CrossRefGoogle Scholar
  43. 43.
    Perez-Pariente J, Martens JA, Jacobs PA (1987) Crystallization mechanism of zeolite beta from (TEA)2O, Na2 O and K2O containing aluminosilicate gels. Appl Catal 31: 35CrossRefGoogle Scholar
  44. 44.
    Shinde SV, Jadhav WN, Lande MK, Gadekar LS, Arbad BR, Kondre JM, Karade NN (2008) Scolecite as a novel heterogeneous acid catalyst for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones via multi-component Biginelli reaction. Catal Lett 125: 57CrossRefGoogle Scholar
  45. 45.
    Gadekar LS, Mane SR, Katkar SS, Arbad BR, Lande MK (2009) Scolecite as an efficient heterogeneous catalysts for the synthesis of 2,4,5-triarylimidazoles. Central Eur J Chem 7: 550CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2010

Authors and Affiliations

  1. 1.Department of ChemistryDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations