Advertisement

Korea-Australia Rheology Journal

, Volume 26, Issue 1, pp 15–28 | Cite as

Quantitative study of equilibrium and non-equilibrium polymer dynamics through systematic hierarchical coarse-graining simulations

  • Vagelis A. Harmandaris
Themed Reviews

Abstract

Study of complex macromolecular systems through molecular simulations is a very intense research area. Here we present an overview concerning the development and application of hierarchical particle coarsegraining molecular dynamics simulations on the quantitative prediction of the dynamics and the rheology of polymers. Through a systematic time mapping approach that involves data from detailed atomistic dynamic simulations the coarse-grained polymer model can be used to quantitatively predict the dynamics and the rheology of the polymeric chains in a very broad range of characteristic length and time scales. Data from the application of these approaches on the dynamics of polystyrene melts under equilibrium and under shear flow conditions are presented.

Keywords

molecular dynamics simulations shear flow coarse-grained models segmental relaxation terminal dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrienko, D.S. Le’on, L. Delle Site and K. Kremer, 2005, Adhesion of polycarbonate blends on a nickel surface, Macromolecules 38, 5810–5816.CrossRefGoogle Scholar
  2. Antonietti, M., K.J. Fölsch and H. Sillescu, 1987, Critical chain lengths in polystyrene bulk diffusion, Makromol. Chem. 188, 2317–2324.CrossRefGoogle Scholar
  3. Baig, C., B.J. Edwards, D.J. Keffer and H.D. Cochran, 2005, Rheological and structural studies of liquid decane, hexadecane, and tetracosane under planar elongational flow using nonequilibrium molecular-dynamics simulations, J. Chem. Phys. 122, 184906.CrossRefGoogle Scholar
  4. Baig, C., B.J. Edwards, D.J. Keffer, H.D. Cochran and V. Harmandaris, 2006, Rheological and structural studies of linear polyethylene melts under planar elongational flow using nonequilibrium molecular dynamics simulations, J. Chem. Phys. 124, 084902.CrossRefGoogle Scholar
  5. Baig, C. and B.J. Edwards, 2011, Analysis of the configurational temperature of polymeric liquids under shear and elongational flows using nonequilibrium molecular dynamics and Monte Carlo simulations, J. Chem. Phys. 132, 184906.CrossRefGoogle Scholar
  6. Baig, C. and V. Harmandaris, 2010, Quantitative analysis on the validity of a coarse-grained model for nonequilibrium polymeric liquids under flow, Macromolecules 43, 3156–3160.CrossRefGoogle Scholar
  7. Baig, C. and V. Mavrantzas, 2009, Multiscale simulation of polymer melt viscoelasticity: Expanded-ensemble Monte Carlo coupled with atomistic non-equilibrium molecular dynamics, Phys. Rev. B. 79, 144302.CrossRefGoogle Scholar
  8. Binder, K. Ed. 1995, Monte Carlo and Molecular Dynamics Simulations in Polymer Science, Oxford University Press, New York.Google Scholar
  9. Delle Site, L., C.F. Abrams, A. Alavi and K. Kremer, 2002, Polymers near metal surfaces: Selective adsorption and global conformations, Phys. Rev. Lett. 89, 156103.CrossRefGoogle Scholar
  10. Depa P.K. and J.K. Maranas, 2007, Dynamic evolution in coarsegrained molecular dynamics simulations of polyethylene melts, J. Chem. Phys. 126, 054903.CrossRefGoogle Scholar
  11. Doi, M. and S.F. Edwards, 1986, The Theory of Polymer Dynamics, Claredon Press: Oxford, England.Google Scholar
  12. Dunweg B. and A.J.C. Ladd, 2008, Lattice Boltzmann simulations of soft matter systems, Adv. Polym. Sci., 89–166.Google Scholar
  13. Eslami, H., H.A. Karimi-Varzaneh and F. Müller-Plathe, 2011, Coarse-grained computer simulation of nanoconfined polyamide-6,6, Macromolecules 44, 3117–3128.CrossRefGoogle Scholar
  14. Español P. and P.B. Warren, 1995, Statistical-mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191–196.CrossRefGoogle Scholar
  15. Evans, D.J. and G.P. Morriss, 2008, Statistical Mechanics of Nonequilibrium Liquids, 2nd Ed. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  16. Evans, D.J. and G.P. Morriss, 1984, Nonlinear-response theory for steady planar Couette flow, Phys. Rev. A 30, 1528–1530.CrossRefGoogle Scholar
  17. Evereaers, R., S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian and K. Kremer, 2004, Rheology and microscopic topology of entangled polymeric liquids, Science 303, 823–826.CrossRefGoogle Scholar
  18. Fraaije, J.G.E.M., B. van Vlimmeren, N. Maurits, M. Postma, O. Evers, C. Hoffmann, P. Altevogt and G. GoldbeckWood, 1996, The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts, J. Chem. Phys. 106, 4260–4269.CrossRefGoogle Scholar
  19. Fritz, D., V. Harmandaris, K. Kremer and N.F.A. van der Vegt, 2009, Coarse-grained polymer melts based on isolated ato mistic chains: Simulation of polystyrene of different tacticities, Macromolecules 42, 7579–7588.CrossRefGoogle Scholar
  20. Fritz, D., K. Koschke, V. Harmandaris, N.F.A. van der Vegt and K. Kremer, 2011, Multiscale modeling of soft matter: scaling of dynamics, Phys. Chem. Chem. Phys. 13, 10412–10420.CrossRefGoogle Scholar
  21. Ganesan, V. and V. Pryamitsyn, 2003, Dynamical mean-field theory for inhomogeneous polymeric systems, J. Chem. Phys. 118, 4345.CrossRefGoogle Scholar
  22. Gompper, T. Ihle, K. Kroll and R.G. Winkler, 2009, Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids, Adv. Polym. Sci. 221, 1–87.Google Scholar
  23. Guenza M. G., 2008, Theoretical models for bridging timescales in polymer dynamics, J. Phys.: Condens. Matter 20, 033101–0331024.Google Scholar
  24. Harmandaris, V., V. Mavrantzas and D.N. Theodorou, 1998, Atomistic molecular dynamics simulation of polydisperse linear polyethylene melts, Macromolecules 31, 7934–7943.CrossRefGoogle Scholar
  25. Harmandaris, V., V. Mavrantzas, D.N. Theodorou, M. Kröger, J. Ramirez, H.C. Öttinger and D. Vlassopoulos, 2003, Crossover from the rouse to the entangled polymer melt regime: Signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments, Macromolecules 36, 1376–1387.CrossRefGoogle Scholar
  26. Harmandaris, V., N.P. Adhikari, N.F.A. van der Vegt and K. Kremer, 2006, Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations, Macromolecules 39, 6708–6719.CrossRefGoogle Scholar
  27. Harmandaris, V.A., D. Reith, N.F.A. van der Vegt and K. Kremer, 2007, Comparison between coarse-graining models for polymer systems: Two mapping schemes for polystyrene, Macromol. Chem. Phys. 208, 2109–2120.CrossRefGoogle Scholar
  28. Harmandaris, V.A. and K. Kremer, 2009a, Dynamics of polystyrene melts through hierarchical multiscale simulations, Macromolecules 42, 791–802.CrossRefGoogle Scholar
  29. Harmandaris, V.A. and K. Kremer, 2009b, Predicting polymer dynamics at multiple length and time scales, Soft Matter 5, 3920–3926.CrossRefGoogle Scholar
  30. Harmandaris, V., G. Floudas and K. Kremer, 2011, Temperature and pressure dependence of polystyrene dynamics through molecular dynamics simulations and experiments, Macromolecules 44, 393–402.CrossRefGoogle Scholar
  31. Harmandaris, V., G. Floudas and K. Kremer, 2013, Dynamic heterogeneity in fully miscible blends of polystyrene with oligostyrene, Phys. Rev. Lett. 110, 165701.CrossRefGoogle Scholar
  32. Hijon C, P. Espanol, E. Vanden-Eijnden and R. Delgado-Buscalioni, 2010, Mori-Zwanzig formalism as a practical computational tool, Faraday Discuss., 144, 301–322.CrossRefGoogle Scholar
  33. Hunt, T.A. and B.D. Todd, 2009, Diffusion of linear polymer melts in shear and extensional flows, J. Chem. Phys. 131, 054904.CrossRefGoogle Scholar
  34. Ilg, P., H.C. Öttinger and Martin Kröger, 2009, Systematic timescale-bridging molecular dynamics applied to flowing polymer melts, Phys. Rev. E 79, 011802.CrossRefGoogle Scholar
  35. Ilg, P., 2010, Thermodynamically consistent coarse graining the non-equilibrium dynamics of unentangled polymer melts, J. Non-Newtonian Fluid Mech. 165, 973–979.CrossRefGoogle Scholar
  36. Izvekov, S. and G.A. Voth 2006, Modeling real dynamics in the coarse-grained representation of condensed phase systems, J. Chem. Phys. 125, 151101.CrossRefGoogle Scholar
  37. Jeon, J. and M.-S. Chun, 2007, Structure of flexible and semiflexible polyelectrolyte chains in confined spaces of slit micro/nanochannels, J. Chem. Phys. 126, 154904/1–10.CrossRefGoogle Scholar
  38. Johnston K. and V. Harmandaris, 2013a, Hierarchical multiscale modeling of polymersolid interfaces: Atomistic to coarsegrained description and structural and conformational properties of polystyrenegold systems, Macromolecules 46, 57415750.CrossRefGoogle Scholar
  39. Johnston K. and V. Harmandaris, 2013b, Hierarchical simulations of hybrid polymer-solid materials, Soft Matter 9, 6696–6710.CrossRefGoogle Scholar
  40. Johnston, K., R.M. Nieminen and K. Kremer, 2011, A hierarchical dualscale study of bisphenol-A-polycarbonate on a silicon surface: structure, dynamics and impurity diffusion, Soft Matter, 7, 6457–6466.CrossRefGoogle Scholar
  41. Katsoulakis, M. and P. Plechac, 2013, Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems, J. Chem. Phys. 139, 074115.CrossRefGoogle Scholar
  42. Kindt P. and W.J. Briels, 2007, A single particle model to simulate the dynamics of entangled polymer melts, J. Chem. Phys. 127, 134901CrossRefGoogle Scholar
  43. Kim, J.M., D.J. Keffer, M. Kröger and B.J. Edwards, 2008, Rheological and entanglement characteristics of linear chain polyethylene liquids in planar Couette and planar elongational flows, J. Non-Newtonian Fluid Mech. 152, 168–183.CrossRefGoogle Scholar
  44. Kremer, K. and G. Grest, 1990, Dynamics of entangled linear polymer melts: A molecular-dynamics simulation, J. Chem. Phys. 92, 5057–5086.CrossRefGoogle Scholar
  45. Kröger, M. and S. Hess, 2000, Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics, Phys. Rev. Lett. 85, 1128–1131.CrossRefGoogle Scholar
  46. Kröger, M., 2004, Simple models for complex nonequilibrium fluids, Phys. Rep. 390, 453–551.CrossRefGoogle Scholar
  47. Kröger, M., 2005, Shortest multiple disconnected path for the analysis of entanglements in two-and three-dimensional polymeric systems, Comput. Phys. Commun. 168, 209–232.CrossRefGoogle Scholar
  48. Kröger, M., W. Loose and S. Hess, 1993, Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics, J. Rheol. 37, 1057.CrossRefGoogle Scholar
  49. Lahmar, F., C. Tzoumanekas, D.N. Theodorou and B. Rousseau, 2009, Onset of Entanglements Revisited. Dynamical Analysis, Macromolecules 42, 7485–7494.CrossRefGoogle Scholar
  50. Larson, R., 1999, The Rheology of Complex Fluids, Oxford University Press, NewYork.Google Scholar
  51. Lee, J.Y., M.-S. Chun, H.W. Jung and J.C. Hyun, 2012, Conformational dynamics of sub-micron sized wormlike polyelectrolyte polymer in flow fields, Macromol. Res. 20, 1163–1172.CrossRefGoogle Scholar
  52. Lees, A.W. and S.F. Edwards, 1972, The computer study of transport processes under extreme conditions, J. Phys. C 5, 1921.CrossRefGoogle Scholar
  53. Li, Y., B.C. Abberton, M. Kröger and W.K. Liu, 2013, Challenges in multiscale modeling of polymers, Polymers 5, 751–832.CrossRefGoogle Scholar
  54. Li, Y, S. Tang, B.C. Abberton, M. Kröger, C. Burkhart, B. Jiang, G.J. Papakonstantopoulos, M. Poldneff and W.K. Liu, 2012, A predictive multiscale computational framework for viscoelastic properties of linear polymers, Polymer 53, 5935–5952.CrossRefGoogle Scholar
  55. Lyubimov I.Y, J. McCarty, A. Clark and M.G. Guenza, 2010, Analytical rescaling of polymer dynamics from mesoscale simulations, J. Chem. Phys. 132, 224903.CrossRefGoogle Scholar
  56. Likhtman, A.E. 2005, Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology, and diffusion, Macromolecules 38, 6128–6139.CrossRefGoogle Scholar
  57. Malevanets A. and R. Kapral, 1999, Mesoscopic model for solvent dynamics, J. Chem. Phys. 110, 8605–8613.CrossRefGoogle Scholar
  58. Masubuchi Y., G. Ianniruberto, F. Greco and G. Marrucci, 2003, Entanglement molecular weight and frequency response of sliplink networks, J. Chem. Phys. 119, 6925–6930.CrossRefGoogle Scholar
  59. Mavrantzas V.G. and D.N. Theodorou, 1998, Atomistic simulation of polymer melt elasticity: Calculation of the free energy of an oriented polymer melt, Macromolecules 31, 6310–6332.CrossRefGoogle Scholar
  60. Mavrantzas V.G. and H.C. Öttinger, 2002, Atomistic Monte Carlo simulations of polymer melt elasticity: Their nonequilibrium thermodynamics GENERIC formulation in a generalized canonical ensemble, Macromolecules 35, 960–975.CrossRefGoogle Scholar
  61. Moore, J.D., S.T. Cui, H.D. Cochran and P.T. Cummings, 2000, A molecular dynamics study of a short-chain polyethylene melt: I. Steady-state shear, J. Non-Newtonian Fluid Mech. 93, 83–99.CrossRefGoogle Scholar
  62. Mulder, T., V. Harmandaris, A.V. Lyulin, N.F.A. van der Vegt, K. Kremer and M.A.J. Michels, 2009, Structural properties of atactic polystyrene of different thermal history obtained from a multi-scale simulation, Macromolecules 42, 384–391.CrossRefGoogle Scholar
  63. Öttinger, H.C. 2007, Systematic coarse graining: “Four Lessons and A Caveat” from nonequilibrium statistical mechanics, MRS Bull. 32, 936–940.CrossRefGoogle Scholar
  64. Padding, J.T. and W.J. Briels, 2002, Time and length scales of polymer melts studied by coarse-grained molecular dynamics simulations, J. Chem. Phys. 117, 925.CrossRefGoogle Scholar
  65. Padding, J.T. and W.J. Briels, 2003, Coarse-grained molecular dynamics simulations of polymer melts in transient and steady shear flow, J. Chem. Phys. 118, 10276.CrossRefGoogle Scholar
  66. Padding, J.T. and W.J. Briels, 2011, Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology, J. Phys.: Condens. Matter 23, 233101.Google Scholar
  67. Pandey, Y.N., A. Brayton, C. Burkhart, G.J. Papakonstantopoulos and M. Doxastakis, 2014, Multiscale modeling of polyisoprene on graphite, J. Chem. Phys, 140, 054908.CrossRefGoogle Scholar
  68. Rahimi, M., I. Iriarte-Carretero, A. Ghanbari, M.C. Bohm and F. Muller-Plathe, 2012, Mechanical behavior and interphase structure in a silica-polystyrene nanocomposite under uniaxial deformation, Nanotechnology 23, 305702.CrossRefGoogle Scholar
  69. Reith, D., H. Meyer and F. Müller-Plathe, 2001, Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties, Macromolecules 34, 2335–2345.CrossRefGoogle Scholar
  70. Rissanou A. and V. Harmandaris, 2013, Dynamics of various polymer/graphene interfacial systems through atomistic molecular dynamics simulations, Soft Matter, to be published.Google Scholar
  71. Shell, M.S. 2012, Systematic coarse-graining of potential energy landscapes and dynamics in liquids, J. Chem. Phys. 137, 084503.CrossRefGoogle Scholar
  72. Todd, B.D. and P.J. Daivis, 1998, Nonequilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions, Phys. Rev. Lett, 81, 1118–1121.CrossRefGoogle Scholar
  73. Todd, B.D. 2001, Computer simulation of simple and complex atomistic fluids by nonequilibrium molecular dynamics techniques, Comp. Phys. Comm. 142, 14–21.CrossRefGoogle Scholar
  74. Tschöp, W., K. Kremer, J. Batoulis, T. Buerger and O. Hahn, 1998, Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates, Acta Polym. 49, 61–74.CrossRefGoogle Scholar
  75. Tzoumanekas, C. and D.N. Theodorou, 2006, Topological analysis of linear polymer melts: a statistical approach, Macromolecules 39, 4592–4604.CrossRefGoogle Scholar
  76. Van den Noort, A. and W.J. Briels, 2008, Brownian dynamics simulations of concentration coupled shear banding, J. Non-Newtonian Fluid Mech. 152, 148–155.CrossRefGoogle Scholar
  77. Vogiatzis, G.G., E. Voyiatzis and D.N. Theodorou, 2011, Monte Carlo simulations of a coarse grained model for an athermal all-polystyrene nanocomposite system, Europ. Polym. J. 47, 699–712.CrossRefGoogle Scholar
  78. Zeng, Q.H., A.B. Yu and G.Q. Lu, 2008, Multiscale modeling and simulation of polymer nanocomposites, Prog. Polym. Sci. 33, 191–269.CrossRefGoogle Scholar
  79. Zwanzig R., 1961, Memory effects in irreversible thermodynamics, Phys. Rev. 124, 983–992.CrossRefGoogle Scholar

Copyright information

© Korean Society of Rheology (KSR) and the Australian Society of Rheology (ASR) and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematics and Applied MathematicsUniversity of CreteHeraklionGreece
  2. 2.Institute of Applied and Computational MathematicsFORTHHeraklionGreece

Personalised recommendations