Advertisement

Korea-Australia Rheology Journal

, Volume 23, Issue 4, pp 237–245 | Cite as

Rheology of concentrated biomass

  • J. R. Samaniuk
  • J. Wang
  • T. W. Root
  • C. T. Scott
  • D. J. Klingenberg
The 11th International Symposium on Applied Rheology Lecture

Abstract

Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained using torque rheometry agree with those obtained using other rheometric methods, but torque rheometry can be used at much larger solids concentration (weight fractions of insoluble solids greater than 0.2). Yield stresses decrease with severity of hydrolysis, decrease when water-soluble polymers are added (for nonhydrolyzed biomass), and increase with particle length. Experimental results are qualitatively consistent with those obtained from particle-level simulations.

Keywords

biomass corn stover rheology yield stress viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aden, A., M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, B. Wallace, L. Montague, A. Slayton, and J. Lukas, 2002, Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover, NREL Technical Report TR-510-32438.Google Scholar
  2. Almin, K. E., P. Biel, and D. Wahren, 1967, Relating the shear modulus of fibre networks to the bulk average fiber stiffness, Svensk Papperstidn. 70, 772–774.Google Scholar
  3. Bennington, C., R. Kerekes, and J. Grace, 1990, The yield stress of fibre suspensions, Can. J. Chem. Eng. 68, 748–757.CrossRefGoogle Scholar
  4. Bergman, J. and N. Takamura, 1965, The correlation between the shear modulus of fibre networks and the individual fibre stiffness, Svensk Papperstidn. 68, 703–710.Google Scholar
  5. Blyler, L. L. and J. H. Daane, 1967, An analysis of Brabender torque rheometer data, Polym. Eng. Sci. 7, 178–181.CrossRefGoogle Scholar
  6. Bohlin VOR Rheometer Users Manual, Malvern Instruments, Westborough, MA. Bousmina, M., A. Ait-Kadi, and J. B. Faisant, 1999, Determination of shear rate and viscosity from batch mixer data, J. Rheol. 43, 415–433.CrossRefGoogle Scholar
  7. Bozell, J. J., L. Moens, D. C. Elliott, Y. Wang, G. G. Neuenscwander, S. W. Fitzpatrick, R. J. Bilski, and J. L. Jarnefeld, 2000, Production of levulinic acid and use as a platform chemical for derived products, Resources, Conservation and Recycling 28, 227–239.CrossRefGoogle Scholar
  8. Bozell, J. J. and G. R. Petersen, 2010, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited, Green Chemistry 12, 539–554.CrossRefGoogle Scholar
  9. Connelly, R. J. and J. L. Kokini, 2004, The effect of shear thinning and differential viscoelasticity on mixing in a model 2D mixer as determined using FEM with particle tracking, J. Non-Newt. Fluid Mech. 123, 1–17.CrossRefGoogle Scholar
  10. Dalpke, B. and R. Kerekes, 2005, The influence of fibre properties on the apparent yield stress of flocculated pulp suspensions, J. Pulp Paper Sci. 31, 39–43.Google Scholar
  11. Dodson, C. T. J., 1996, Fiber crowding, fiber contacts, and fiber flocculation, TAPPI J. 79, 211–215.Google Scholar
  12. Dzuy, N. Q. and D. V. Boger, 1983, Yield stress measurement for concentrated suspensions, J. Rheol. 27, 321–349.CrossRefGoogle Scholar
  13. Dzuy, N. Q. and D. V. Boger, 1985, Direct Yield Stress Measurement with the Vane Method, J. Rheol. 29, 335–347.CrossRefGoogle Scholar
  14. Ehrhardt, M. R., 2008, Rheology of Biomass, M.S. Thesis, University of Wisconsin, Madison, WI.Google Scholar
  15. Ehrhardt, M. R., T. O. Monz, T. W. Root, R. K. Connelly, C. T. Scott, and D. J. Klingenberg, 2010, Rheology of Dilute Acid Hydrolyzed Corn Stover at High Solids Concentration, Appl. Biochem. Biotechnol. 160, 1102–1115.CrossRefGoogle Scholar
  16. Goodrich, J. E. and R. S. Porter, 1967, A rheological interpretation of torque-rheometer data, Polym. Sci. Eng. 7, 45–51.CrossRefGoogle Scholar
  17. Jorgensen, H., J. Vibe-Pedersen, J. Larsen, and C. Felby, 2007, Liquefaction of lignocellulose at high-solids concentrations, Biotechnol. Bioeng. 96, 862–870.CrossRefGoogle Scholar
  18. Kerekes, R. J., 1985, The flocculation of pulp fibers, in Papermaking Raw Materials, V. Punton, ed., Mechanical Engineering Publications Ltd., London, pp. 265–310.Google Scholar
  19. Kerekes, R. J. and C. J. Schell, 1992, Characterization of fibre flocculation regimes by a crowding factor, J. Pulp. Paper Sci. 18, J32–J38.Google Scholar
  20. Kerekes, R. J., 1995, Perspectives on fibre flocculation in papermaking, in 1995 Proceedings of the International Paper Physics Conference, CPPA, Montreal, pp. 23–31.Google Scholar
  21. Kerekes, R., 2006, Rheology of fibre suspensions in papermaking: An overview of recent research, Nordic Pulp Paper Res. J. 21, 598–612.CrossRefGoogle Scholar
  22. Knutsen, J. S. and M. W. Liberatore, 2009, Rheology of high-solids biomass slurries for biorefinery applications, J. Rheol. 53, 877–892.CrossRefGoogle Scholar
  23. Knutsen, J. S. and M. W. Liberatore, 2010, Rheology modication and enzyme kinetics of high solids cellulosic slurries, Energy Fuels 24, 3267–3274.CrossRefGoogle Scholar
  24. Kurath, S. F., 1959, The network and viscoelastic properties of wet pulp. I. Dynamic mechanical analysis, Tappi 42, 953–959.Google Scholar
  25. Lee, P. F. W. and T. Lindstrom, 1989, Effects of high molecular mass anionic polymers on paper sheet formation, Nordic Pulp Pap. Res. J. 4, 61–70.CrossRefGoogle Scholar
  26. Lindstrom, T., 1989, Some fundamental aspects on paper forming, in Fundamentals of Papermaking, C. F. Baker and V. W. Punton, eds., Mechanical Engineering Publishers, Ltd., London, pp. 311–412.Google Scholar
  27. Lu, Y., Y. Wang, G. Xu, J. Chu, Y. Zhuang, and S. Zhang, 2010, Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass, Appl. Biochem. Biotechnol. 160, 360–369.CrossRefGoogle Scholar
  28. Lynd, L. R., 1996, Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy, Annu. Rev. Energy Environ. 21, 403–465.CrossRefGoogle Scholar
  29. Meyer, R. and D. Wahren, 1964, On the elastic properties of three-dimensional fiber networks, Svensk Papperstidn. 67, 432–436.Google Scholar
  30. Monz, T. O., 2009, Investigation of biomass rheology in different geometries, Diplomarbeit Thesis, Stuttgart University and University of Wisconsin, Madison, WI.Google Scholar
  31. Pimenova, N. and T. Hanley, 2003, Measurement of rheological properties of corn stover suspensions, Appl. Biochem. Biotechnol. 106, 383–392.CrossRefGoogle Scholar
  32. Pimenova, N. and T. Hanley, 2004, Effect of corn stover concentration on rheological characteristics, Appl. Biochem. Biotechnol. 114, 347–360.CrossRefGoogle Scholar
  33. Rosgaard, L., P. Andric, K. Dam-Johansen, S. Pedersen, and A. S. Meyer, 2007, Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw, Appl. Biochem. Biotechnol. 143, 27–40.CrossRefGoogle Scholar
  34. Samaniuk, J. R., C. T. Scott, T. W. Root, and D. J. Klingenberg, 2011, to be submitted.Google Scholar
  35. Schell, D. J, J. Farmer, M. Newman, and J. D. McMillan, 2003, Dilute sulfuric acid pretreatment of corn stover in pilot-scale reactor.Investigation of yields, kinetics, and enzymatic digestibilities of solids, Appl. Biochem. Biotechnol. 105, 69–85.CrossRefGoogle Scholar
  36. Scott, C. T., 2002, Pulp extrusion and ultra-high consistencies: selection of water-soluble polymers for process optimization, Tappi Fall Conference & Trade Fair, http://www.fpl.fs.fed.us/documnts/pdf2002/scott02a.pdf.
  37. Serrano-Ruiz, J. C., D. Wang, and J. A. Dumesic, 2010a, Catalytic upgrading of levulinic acid to 5-nonanone, Green Chemistry 12, 574–577.CrossRefGoogle Scholar
  38. Serrano-Ruiz, J. C., D. J. Braden, R. M. West, and J. A. Dumesic, 2010b, Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen, Appl. Catalysis B: Environmental 100, 184–189.CrossRefGoogle Scholar
  39. Sheehan, J., A. Aden, K. Paustian, K. Killian, J. Brenner, M. Walsh, and R. Nelson, 2004, Energy and environmental aspects of using corn stover for fuel ethanol, J. Ind. Ecology 7, 117–146.CrossRefGoogle Scholar
  40. Singh, K. M., 1985, Flow Characteristics of High Consistency Pulp as Studied in a Concentric Cylinder Viscometer, M. S. Thesis, State University of New York, Syracuse, New York.Google Scholar
  41. Soszynski, R. M. and R. J. Kerekes, 1988a, Elastic interlocking of nylon fibers suspended in liquid. Part 1.Nature of cohesion among fibers, Nordic J. Pulp Paper Res. 3, 172–179.CrossRefGoogle Scholar
  42. Soszynski, R. M. and R. J. Kerekes, 1988b, Elastic interlocking of nylon fibers suspended in liquid. Part 2.Process of interlocking, Nordic J. Pulp Paper Res. 3, 180–184.CrossRefGoogle Scholar
  43. Steffe, J. F., 1996, Rheological Methods in Food Processing Engineering, 2nd ed., Freeman, East Lansing.Google Scholar
  44. Stickel, J. J., J. S. Knutsen, M. W. Liberatore, W. Luu, D. W. Bouseld, D. J. Klingenberg, C. T. Scott, T. W. Root, M. R. Ehrhardt, and T. O. Monz, 2009, Rheology measurements of a biomass slurry: an inter-laboratory study, Rheol. Acta 48, 1005–1015.CrossRefGoogle Scholar
  45. Swerin, A., R. L. Powell, and L. Odberg, 1992, Linear and nonlinear dynamic viscoelasticity of pulp fiber suspensions, Nordic Pulp Paper Res. J. 7, 126–132.CrossRefGoogle Scholar
  46. Switzer, L. H., 2002, Simulations of Systems of Flexible Fibers, Ph. D. thesis, University of Wisconsin-Madison.Google Scholar
  47. Switzer, L. H. and D. J. Klingenberg, 2003, Rheology of sheared flexible fiber suspensions via fiber-level simulations, J. Rheol. 47, 759–778.CrossRefGoogle Scholar
  48. Thalen, N. and D. Wahren, 1964a, A new elasto-viscometer, Svensk Papperstidn. 67, 226–231.Google Scholar
  49. Thalen, N. and D. Wahren, 1964b, Shear modulus and ultimate shear strength of some paper pulp fiber networks, Svensk Papperstidn. 67, 259–264.Google Scholar
  50. Thalen, N. and D. Wahren, 1964c, An experimental investigation of the shear modulus of model fibre networks, Svensk Papperstidn. 67, 474–480.Google Scholar
  51. Um, B. and T. R. Hanley, 2008, A comparison of simple rheological parameters and simulation data for zymomonasmobilis fermentation broths with high substrate loading in a 3-L bioreactor, Appl. Biochem. Biotechnol. 145, 29–38.CrossRefGoogle Scholar
  52. Viamajala, S., J. D. McMillan, D. J. Schell, and R. T. Elander, 2009, Rheology of corn stover slurries at high solids concentrations. Effects of saccharication and particle size, Bioresource Technology 100, 925–934.CrossRefGoogle Scholar
  53. Wang, J., 2012, Ph. D. Thesis, University of Wisconsin, Madison, WI.Google Scholar
  54. Wingren, A., M. Galbe, and G. Zacchi, 2003, Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identication of bottlenecks, Biotechnol. Prog. 19, 1109–1117.CrossRefGoogle Scholar
  55. Wooley, R., M. Ruth, J. Sheehan, K. Ibsen, H. Majdeski, and A. Galvez, 1999, Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios, NREL Technical Report TP-58026157.Google Scholar
  56. Wyman, C. E., 2007, What is (and is not) vital to advancing cellulosic ethanol, Trends in Biotechnology 25, 153–157.CrossRefGoogle Scholar
  57. Zauscher, S., 1999, Polymer Mediated Surface Interactions in Pulp Fiber Suspension Rheology, Ph. D. Thesis, University of Wisconsin.Google Scholar
  58. Zauscher, S., C. T. Scott, J. L. Willet, and D. J. Klingenberg, 2000, Pulp Extrusion at ultra-high consistencies: a new processing method for recycling wastepapers and papermill sludges, TAPPI J. 83, 62.Google Scholar
  59. Zauscher, S. and D. J. Klingenberg, 2000, Normal forces between cellulose surfaces measured with colloidal probe microscopy, J. Coll. Int. Sci. 229, 497–510.CrossRefGoogle Scholar
  60. Zauscher, S. and D. J. Klingenberg, 2001a, Friction forces between cellulose surfaces measured with colloidal probe microscopy, Coll. Surf. A 178, 213–229.CrossRefGoogle Scholar
  61. Zauscher, S. and D. J. Klingenberg, 2001b, Surface and friction forces between cellulose surfaces measured with colloidal probe microscopy, Nordic Pulp Pap. Res. J. 15, 459–468.CrossRefGoogle Scholar

Copyright information

© Korean Society of Rheology (KSR) and the Australian Society of Rheology (ASR) and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. R. Samaniuk
    • 1
  • J. Wang
    • 1
  • T. W. Root
    • 1
  • C. T. Scott
    • 2
  • D. J. Klingenberg
    • 1
  1. 1.Department of Chemical and Biological Engineering, and Rheology Research CenterUniversity of WisconsinMadisonUSA
  2. 2.U.S. Forest Service Forest Products LaboratoryMadisonUSA

Personalised recommendations