Vanishing symmetric Kronecker coefficients
Original Paper
First Online:
- 3 Downloads
Abstract
In this note, we prove the vanishing of infinitely many rectangular symmetric Kronecker coefficients by finding holes in the corresponding semigroup.
Keywords
(Symmetric) Kronecker coefficients Non saturation Geometric complexity theory Orbit closure of the determinantMathematics Subject Classification
20B30 20C30 20G05Notes
Acknowledgements
I am very grateful to Christian Ikenmeyer for useful discussions, for mentioning mistakes in a preliminary version and his help with explicit computation. I also would like to thank Pr Mark Wildon who helped me in the using of his Haskell programs to compute plethysm coefficients. The author is partially supported by the French National Agency (Projects GeoLie ANR-15-CE40-0012 and CompA ANR-13-BS02-0001) and the Institut Universitaire de France (IUF).
References
- Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox Rings, Cambridge Studies in Advanced Mathematics, vol. 144. Cambridge University Press, Cambridge (2015)zbMATHGoogle Scholar
- Berenstein, A., Sjamaar, R.: Coadjoint orbits, moment polytopes, and the Hilbert–Mumford criterion. J. Am. Math. Soc. 13(2), 433–466 (2000)MathSciNetCrossRefGoogle Scholar
- Briand, E., Orellana, R., Rosas, M.: Reduced Kronecker coefficients and counter-examples to Mulmuley’s strong saturation conjecture SH. Comput. Complex. 18(4), 577–600 (2009) (with an appendix by Ketan Mulmuley) MathSciNetCrossRefGoogle Scholar
- Bürgisser, P., Landsberg, J.M., Manivel, L., Weyman, J.: An overview of mathematical issues arising in the geometric complexity theory approach to \({\rm VP}\ne {\rm VNP}\). SIAM J. Comput. 40(4), 1179–1209 (2011)MathSciNetCrossRefGoogle Scholar
- Bürgisser, P., Ikenmeyer, C., Hüttenhain, J.: Permanent versus determinant: not via saturations. Proc. Am. Math. Soc. 145(3), 1247–1258 (2017)MathSciNetCrossRefGoogle Scholar
- Bürgisser, P., Ikenmeyer, C., Panova, G.: No occurrence obstructions in geometric complexity theory. J. Am. Math. Soc. 32(1), 163–193 (2019)MathSciNetCrossRefGoogle Scholar
- Carbonara, J.O., Remmel, J.B., Yang, M.: Exact formulas for the plethysm \(s_2\) and \(s_{1^2}\). Technical report, MSI (1992)Google Scholar
- Élashvili, A.G.: Invariant Algebras, Lie Groups, Their Discrete Subgroups, and Invariant Theory, Adv. Soviet Math., vol. 8. Amer. Math. Soc., Providence, pp. 57–64 (1992)Google Scholar
- Evseev, A., Paget, R., Wildon, M.: Character deflations and a generalization of the Murnaghan–Nakayama rule. J. Group Theory 17(6), 1035–1070 (2014)MathSciNetCrossRefGoogle Scholar
- Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics, vol. 129. Springer, New York (1991) (a first course, Readings in Mathematics) Google Scholar
- Franz, M.: Moment polytopes of projective \(G\)-varieties and tensor products of symmetric group representations. J. Lie Theory 12(2), 539–549 (2002)MathSciNetzbMATHGoogle Scholar
- Frobenius, G.: Ueber die Darstellung der endlichen Gruppen durch lineare Substitutionen. Berl. Ber. 1897, 994–1015 (1897)zbMATHGoogle Scholar
- Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
- Ikenmeyer, C.: Geometric complexity theory, tensor rank, and Littlewood–Richardson coefficients, Ph.D. Thesis, Paderborn, Univ. ProQuest LLC, Ann Arbor (2012)Google Scholar
- Klyachko, A.: Quantum marginal problem and representations of the symmetric group, eprint, pp. 1–47. arXiv:quant-ph/0409113 (2004)
- Kumar, S.: Geometry of orbits of permanents and determinants. Comment. Math. Helv. 88(3), 759–788 (2013)MathSciNetCrossRefGoogle Scholar
- Kumar, S.: A study of the representations supported by the orbit closure of the determinant. Compos. Math. 151(2), 292–312 (2015)MathSciNetCrossRefGoogle Scholar
- Langley, T.M., Remmel, J.B.: The plethysm \(s_\lambda \) at hook and near-hook shapes. Electron. J. Combin. 11(1), Research Paper 11, 26 (2004)Google Scholar
- Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1995) (with contributions by A. Zelevinsky, Oxford Science Publications) Google Scholar
- Manivel, L.: On the asymptotics of Kronecker coefficients. J. Algebr. Combin. 42(4), 999–1025 (2015)MathSciNetCrossRefGoogle Scholar
- Mignon, T., Ressayre, N.: A quadratic bound for the permanant-determinant problem. Int. Math. Res. Notices 79, 4241–4254 (2004)CrossRefGoogle Scholar
- Mulmuley, K.D., Sohoni, M.: Geometric complexity theory. I. An approach to the P vs. NP and related problems. SIAM J. Comput. 31(2), 496–526 (2001)MathSciNetCrossRefGoogle Scholar
- Procesi, C.: Lie Groups, Universitext. Springer, New York (2007) (an approach through invariants and representations) Google Scholar
- Ressayre, N.: Geometric invariant theory and generalized eigenvalue problem. Invent. Math. 180, 389–441 (2010)MathSciNetCrossRefGoogle Scholar
- Ressayre, N.: Horn inequalities for nonzero Kronecker coefficients. ArXiV e-prints, pp. 1–22 (2012)Google Scholar
- Ressayre, N.: Homepage. http://math.univ-lyon1.fr/~ressayre/calculsVanishKron.tar (2018)
- Valiant, L.G.: Completeness classes in algebra, Conference Record of the Eleventh Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1979). ACM, New York, pp. 249–261 (1979a)Google Scholar
- Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8(2), 189–201 (1979b)MathSciNetCrossRefGoogle Scholar
- Valiant, L.G.: Reducibility by algebraic projections, Logic and algorithmic (Zurich, 1980), Monograph. Enseign. Math., vol. 30. Univ. Genève, Geneva, pp. 365–380 (1982)Google Scholar
- Wildon, M.: Homepage. http://www.ma.rhul.ac.uk/~uvah099/ (2019)
Copyright information
© The Managing Editors 2019