The Brauer group of Azumaya–Poisson S-algebras

  • T. GuédénonEmail author
Original Paper


In this paper we define the notion of Brauer group for Azumaya–Poisson S-algebras. This Brauer group turns out to be an example of a Brauer group of a symmetric monoidal category.


Poisson algebras Poisson modules Hopf algebras Brauer groups Brauer–Clifford groups Symmetric monoidal categories 

Mathematics Subject Classification

Primary 16K50 17B63 Secondary 16T05 



  1. Auslander, M., Goldman, O.: The Brauer group of a commutative ring, 367–409. Trans. Am. Math. Soc. 97, 307–409 (1960)Google Scholar
  2. Caenepeel, S.: A cohomological interpretation of the Brauer Groups I. Comm. Algebra 11, 2129–2149 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Caenepeel, S.: Brauer Groups, Hopf Algebras and Galois Theory, \(K\)-Monographs Math, vol. 4. Kluwer Academic, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  4. Caenepeel, S., Van Oystaeyen, F.: Brauer Groups and the Cohomology of Graded Rings, Monographs and Textbooks in Pure and App, vol. 121. Math. Marcel Dekker, New York (1988). ISBN 0-8247-7978-9, 261+x pzbMATHGoogle Scholar
  5. DeMeyer, F.: An action of the automorphism group of a commutative ring on its Brauer group. Pac. J. Math. 97(2), 327–338 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  6. DeMeyer, F., Ingraham, E.: Separable Algebras over Commutative Rings. Springer, Berlin (1971)CrossRefzbMATHGoogle Scholar
  7. Guédénon, T.: Sur la cohomologie \(g\)-finie. Comm. Algebra 21(4), 1103–1139 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Guédénon, T.: On the \(H\)-finite cohomology. J. Algebra 273, 455–488 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Guédénon, T., Herman, A.: The Brauer-Clifford group for \((S, H)\)-Azumaya algebras over a commutative ring. Algebras Rep. Theory 16(1), 101–127 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Knus, M.-A., Ojanguren, M.: Théorie de la Descente et Algèbres d’Azumaya, vol. 389. Springer, Berlin (1974)CrossRefzbMATHGoogle Scholar
  11. MacLane, S.: Categories for the Working Mathematician. Springer, Berlin (1971)zbMATHGoogle Scholar
  12. Montgomery, S.: Hopf algebras and their actions on rings, CBMS Reg. Conf. Ser. in Math. 82, AMS (1993)Google Scholar
  13. Oh, S.-Q.: Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices. Comm. Algebra 27(5), 2163–2180 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Pareigis, B.: The Brauer group of a symmetric monoidal category. In: Zelinsky, D. (ed.) Brauer Groups, Evanston 1975, Lecture Notes in Math., 549. Springer, Berlin (1976)Google Scholar
  15. Pareigis, B.: Non additive ring and module theory I. General theory of monoids. Publicationes Mathematicae., 24 Kotet Debrecen, pp. 189–204 (1977)Google Scholar
  16. Sweedler, M.: Hopf Algebras. Benjamin, New York (1969)zbMATHGoogle Scholar

Copyright information

© The Managing Editors 2019

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité de ZiguinchorZiguinchorSénégal

Personalised recommendations