Advertisement

The Brauer group of Azumaya–Poisson S-algebras

  • T. GuédénonEmail author
Original Paper
  • 5 Downloads

Abstract

In this paper we define the notion of Brauer group for Azumaya–Poisson S-algebras. This Brauer group turns out to be an example of a Brauer group of a symmetric monoidal category.

Keywords

Poisson algebras Poisson modules Hopf algebras Brauer groups Brauer–Clifford groups Symmetric monoidal categories 

Mathematics Subject Classification

Primary 16K50 17B63 Secondary 16T05 

Notes

References

  1. Auslander, M., Goldman, O.: The Brauer group of a commutative ring, 367–409. Trans. Am. Math. Soc. 97, 307–409 (1960)Google Scholar
  2. Caenepeel, S.: A cohomological interpretation of the Brauer Groups I. Comm. Algebra 11, 2129–2149 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Caenepeel, S.: Brauer Groups, Hopf Algebras and Galois Theory, \(K\)-Monographs Math, vol. 4. Kluwer Academic, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  4. Caenepeel, S., Van Oystaeyen, F.: Brauer Groups and the Cohomology of Graded Rings, Monographs and Textbooks in Pure and App, vol. 121. Math. Marcel Dekker, New York (1988). ISBN 0-8247-7978-9, 261+x pzbMATHGoogle Scholar
  5. DeMeyer, F.: An action of the automorphism group of a commutative ring on its Brauer group. Pac. J. Math. 97(2), 327–338 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  6. DeMeyer, F., Ingraham, E.: Separable Algebras over Commutative Rings. Springer, Berlin (1971)CrossRefzbMATHGoogle Scholar
  7. Guédénon, T.: Sur la cohomologie \(g\)-finie. Comm. Algebra 21(4), 1103–1139 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Guédénon, T.: On the \(H\)-finite cohomology. J. Algebra 273, 455–488 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Guédénon, T., Herman, A.: The Brauer-Clifford group for \((S, H)\)-Azumaya algebras over a commutative ring. Algebras Rep. Theory 16(1), 101–127 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Knus, M.-A., Ojanguren, M.: Théorie de la Descente et Algèbres d’Azumaya, vol. 389. Springer, Berlin (1974)CrossRefzbMATHGoogle Scholar
  11. MacLane, S.: Categories for the Working Mathematician. Springer, Berlin (1971)zbMATHGoogle Scholar
  12. Montgomery, S.: Hopf algebras and their actions on rings, CBMS Reg. Conf. Ser. in Math. 82, AMS (1993)Google Scholar
  13. Oh, S.-Q.: Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices. Comm. Algebra 27(5), 2163–2180 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Pareigis, B.: The Brauer group of a symmetric monoidal category. In: Zelinsky, D. (ed.) Brauer Groups, Evanston 1975, Lecture Notes in Math., 549. Springer, Berlin (1976)Google Scholar
  15. Pareigis, B.: Non additive ring and module theory I. General theory of monoids. Publicationes Mathematicae., 24 Kotet Debrecen, pp. 189–204 (1977)Google Scholar
  16. Sweedler, M.: Hopf Algebras. Benjamin, New York (1969)zbMATHGoogle Scholar

Copyright information

© The Managing Editors 2019

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité de ZiguinchorZiguinchorSénégal

Personalised recommendations