Advertisement

Parallelisms of \(\mathrm{PG}(3,\mathbb R)\) admitting a 3-dimensional group

  • Rainer Löwen
Original Paper

Abstract

Betten and Riesinger (Aequ Math 81:227–250, 2011) constructed parallelisms of \({\mathrm{PG}(3,\mathbb {R})}\) with automorphism group \({\mathrm{SO}(3, \mathbb {R})}\) by applying the reducible \({\mathrm{SO}(3, \mathbb {R})}\)-action to a rotational Betten spread. This was generalized by Löwen (Rotational spreads and rotational parallelisms and oriented parallelisms of PG(3,\({\mathbb {R}}\)). arXiv:1804.07615, 2018) so as to include oriented parallelisms (i.e., parallelisms of oriented lines). In this way, a much larger class of examples was produced. Here we show that, apart from Clifford parallelism, these are the only topological parallelisms admitting an automorphism group of dimension 3 or larger. In particular, we show that a topological parallelism admitting the irreducible action of \({\mathrm{SO}(3, \mathbb {R})}\) is Clifford.

Keywords

Topological parallelism Automorphism group Clifford parallelism 

Mathematics Subject Classification

51H10 51A15 51M30 

References

  1. Betten, D., Riesinger, R.: Parallelisms of PG(3;\({\mathbb{R}}\)) composed of non-regular spreads. Aequ. Math. 81, 227–250 (2011)MathSciNetCrossRefGoogle Scholar
  2. Betten, D., Riesinger, R.: Automorphisms of some topological regular parallelisms of PG(3;\({\mathbb{R}}\)). Results Math. 66, 291–326 (2014)MathSciNetCrossRefGoogle Scholar
  3. Betten, D., Riesinger, R.: Regular 3-dimensional parallelisms of PG(3, R). Bull. Belg. Math. Soc. Simon Stevin 22, 1–23 (2015)MathSciNetzbMATHGoogle Scholar
  4. Betten, D., Löwen, R.: Compactness of the automorphism group of a topological parallelism on real projective 3-space. Results Math. 72, 1021–1030 (2017)MathSciNetCrossRefGoogle Scholar
  5. Löwen, R.: Regular parallelisms from generalized line stars in \(P_3{\mathbb{R}}\): a direct proof. J. Geom. 107, 279–285 (2016)MathSciNetCrossRefGoogle Scholar
  6. Löwen, R.: A characterization of Clifford parallelism by automorphisms, Innovations in Incidence Geometry. arXiv:1702.03328 (2017a) (to appear)
  7. Löwen, R.: Compactness of the automorphism group of a topological parallelism on real projective 3-space: the disconnected case, Bull. Belg. Math. Soc. Simon Stevin. arXiv:1710.05558 (2017b) (to appear)
  8. Löwen, R.: Rotational spreads and rotational parallelisms and oriented parallelisms of PG(3,\({\mathbb{R}}\)). arXiv:1804.07615 (2018)
  9. Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R., Stroppel, M.: Compact Projective Planes. de Gruyter, Berlin (1995)CrossRefGoogle Scholar

Copyright information

© The Managing Editors 2018

Authors and Affiliations

  1. 1.Technische Universität Braunschweig, Institut für Analysis und AlgebraUniversitätsplatz 2BrunswickGermany

Personalised recommendations