Advertisement

Automorphism groups of Koras–Russell threefolds of the second kind

  • Charlie PetitjeanEmail author
Original Paper
  • 75 Downloads

Abstract

We determine the automorphism groups of Koras–Russell threefolds of the second kind. In particular we show that these groups are semi-direct products of two subgroups, one given by the multiplicative group and the other isomorphic to a polynomial ring in two variables with the addition law. We also show that these groups are generated by algebraic subgroups isomorphic to \(\mathbb {G}_{m}\) and \(\mathbb {G}_{a}\).

Keywords

Automorphism groups of affine varieties Koras–Russell threefolds 

Mathematics Subject Classification

14R10 14R20 

References

  1. Alhajjar, B.: The filtration induced by a locally nilpotent derivation (2013). arXiv:1310.3784
  2. Dubouloz, A.: The cylinder over the Koras–Russell cubic threefold has a trivial Makar-Limanov invariant. Transform. Groups 14(3), 531–539 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Dubouloz, A., Moser-Jauslin, L., Poloni, P.-M.: Inequivalent embeddings of the Koras–Russell cubic 3-fold. Mich. Math. J. 59(3), 679–694 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Dubouloz, A., Moser-Jauslin, L., Poloni, P.-M.: Automorphisms in birational and affine geometry. In: Proceedings of Conference in Levico Terme, Italy. Springer Proceedings in Mathematics and Statistics (2014)Google Scholar
  5. Freudenburg, G.: Algebraic theory of locally nilpotent derivations. In: Encyclopaedia of Mathematical Sciences, vol. 136. Invariant Theory and Algebraic Transformation Groups, VII. Springer, Berlin (2006)Google Scholar
  6. Hurwitz, A.: Ueber algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41(3), 403–442 (1892)MathSciNetCrossRefGoogle Scholar
  7. Jung, H.: Uber ganze birationale Transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)MathSciNetzbMATHGoogle Scholar
  8. Koras, M., Russell, P.: Contractible threefolds and \(\mathbb{C}^{*}\)-actions on \(\mathbb{C}^{3}\). J. Algebraic Geom. 6, 671–695 (1997)MathSciNetzbMATHGoogle Scholar
  9. Kambayashi, T.: Automorphism group of a polynomial ring and algebraic group action on an affine space. J. Algebra 60(2), 439–451 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Kaliman, S., Makar-Limanov, L.: On the Russell–Koras contractible threefolds. J. Algebraic Geom. 6(2), 247–268 (1997)MathSciNetzbMATHGoogle Scholar
  11. Kaliman, S., Koras, M., Makar-Limanov, L., Russell, P.: \(\mathbb{C}^{*}\)-actions on \(\mathbb{C}^{3}\) are linearizable. Electron. Res. Announc. Am. Math. Soc. 3, 63–71 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Moser-Jauslin, L.: Automorphism groups of Koras–Russell threefolds of the first kind. Affine algebraic geometry. In: CRM Proc. Lecture Notes, vol. 54, pp. 261–270. Am. Math. Soc., Providence (2011)Google Scholar
  13. Makar-Limanov, L.: On the hypersurface \(x+x^{2}y+z^{2}+t^{3}=0\) in \({\mathbb{C}^{4}}\) or a \({\mathbb{C}^{3}}\)-like threefold which is not \({\mathbb{C}^{3}}\). Isr. J. Math. 96(part B), 419–429 (1996)Google Scholar
  14. Makar-Limanov, L.: Locally nilpotent derivations, a new ring invariant and applications (1998). http://www.math.wayne.edu/~lml/lmlnotes
  15. Van der Kulk, W.: On polynomial rings in two variables. Nieuw Arch. Wiskd. 1(3), 33–41 (1953)Google Scholar

Copyright information

© The Managing Editors 2016

Authors and Affiliations

  1. 1.Institut de Mathématiques de BourgogneUniversité de Bourgogne Franche-ComtéDijon CedexFrance

Personalised recommendations