Planar discrete isothermic nets of conical type

Original Paper

Abstract

We explore a specific discretization of isothermic nets in the plane which can also be interpreted as a discrete holomorphic map. The discrete orthogonality of the quadrilateral net is achieved by the so called conical condition imposed on vertex stars. That is, the sums of opposite angles between edges around all vertices are equal. This conical condition makes it possible to define a family of underlying circle patterns for which we can show invariance under Möbius transformations. Furthermore, we use the underlying circle pattern to characterize discrete isothermic nets in the projective model of Möbius geometry, and as Moutard nets in homogeneous coordinates in relation to the light cone in this model. We further investigate some examples of discrete isothermic nets and apply the Christoffel dual construction to obtain discrete minimal surfaces of conical type.

Keywords

Discrete differential geometry Conical nets Isothermic nets Minimal surfaces 

Mathematics Subject Classification

51B10 52B70 52C26 53A10 

References

  1. 1.
    Bobenko, A.I., Hoffmann, T., Springborn, B.A.: Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. (2) 164(1), 231–264 (2006)Google Scholar
  2. 2.
    Bobenko, A.I., Pinkall, U.: Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996)MathSciNetMATHGoogle Scholar
  3. 3.
    Bobenko, A.I., Suris, Yu.B.: Discrete differential geometry: integrable structure. In: No. 98 in Graduate Studies in Math. American Math. Soc., USA (2008)Google Scholar
  4. 4.
    Bobenko, A.I., Suris, YuB: Discrete Koenigs nets and discrete isothermic surfaces. Int. Math. Res. Not. IMRN 11, 1976–2012 (2009)MathSciNetMATHGoogle Scholar
  5. 5.
    Cecil, T.E.: Lie sphere geometry. Universitext, 2nd edn. Springer, New York (2008)Google Scholar
  6. 6.
    Christoffel, E.B.: Ueber einige allgemeine Eigenschaften der Minimumsflächen. J. Reine Angew. Math. 67, 218–228 (1867)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Darboux, G.: Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Deuxième partie. Chelsea Publishing Co., Bronx (1972)MATHGoogle Scholar
  8. 8.
    Doliwa, A.: Geometric discretization of the Koenigs nets. J. Math. Phys. 44(5), 2234–2249 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    He, Z.X., Schramm, O.: On the convergence of circle packings to the Riemann map. Invent. Math. 125(2), 285–305 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Henrici, P.: Applied and computational complex analysis. In: Wiley Classics Library, vol. 1–3. Wiley, New York (1993)Google Scholar
  11. 11.
    Hertrich-Jeromin, U.: Introduction to Möbius differential geometry. In: London Mathematical Society Lecture Note Series, vol. 300. Cambridge University Press, Cambridge (2003)Google Scholar
  12. 12.
    Liu, Y., Pottmann, H., Wallner, J., Yang, Y.L., Wang, W.: Geometric modeling with conical meshes and developable surfaces. Proc. SIGGRAPH. ACM Trans. Graph. 25(3), 681–689 (2006)Google Scholar
  13. 13.
    Müller, C.: Conformal hexagonal meshes. Geom. Dedicata 154, 27–46 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Müller, C.: Discretizations of the hyperbolic cosine. Beitr. Algebra Geom. 54(2), 509–531 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Müller, C., Wallner, J.: Semi-discrete isothermic surfaces. Results Math. 63(3–4), 1395–1407 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Pottmann, H., Liu, Y.: Discrete surfaces in isotropic geometry. In: IMA Conference on the Mathematics of Surfaces, Lecture Notes in Computer Science, vol. 4647, pp. 341–363. Springer, Berlin (2007)Google Scholar
  17. 17.
    Pottmann, H., Wallner, J.: The focal geometry of circular and conical meshes. Adv. Comput. Math. 29(3), 249–268 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Richter-Gebert, J.: Perspectives on Projective Geometry. Springer, Heidelberg (2011)CrossRefMATHGoogle Scholar
  19. 19.
    Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. J. Differ. Geom. 26(2), 349–360 (1987)MathSciNetMATHGoogle Scholar
  20. 20.
    Sauer, R.: Differenzengeometrie. Springer, Berlin (1970)CrossRefMATHGoogle Scholar
  21. 21.
    Stephenson, K.: Introduction to Circle Packing. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar
  22. 22.
    Wang, W., Wallner, J., Liu, Y.: An angle criterion for conical mesh vertices. J. Geom. Graph. 11(2), 199–208 (2007)MathSciNetMATHGoogle Scholar
  23. 23.
    Wunderlich, W.: Beitrag zur Kenntnis der Minimalschraubflächen. Compositio Math. 10, 297–311 (1952)MathSciNetMATHGoogle Scholar

Copyright information

© The Managing Editors 2015

Authors and Affiliations

  1. 1.Institute of Discrete Mathematics and GeometryVienna University of TechnologyViennaAustria

Personalised recommendations