Advertisement

On the number of generators of ideals defining Gorenstein Artin algebras with Hilbert function \( \left( 1,n+1 , 1+{n+1\atopwithdelims ()2}, \ldots ,{n+1\atopwithdelims ()2}+1, n+1 ,1\right) \)

  • El Khoury Sabine
  • A. V. Jayanthan
  • Hema Srinivasan
Original Paper
  • 81 Downloads

Abstract

Let \(R = k[w, x_1, \ldots , x_n]/I\) be a graded Gorenstein Artin algebra. \(I = \mathrm{ann }F\) for some \(F\) in the divided power algebra \(k[W, X_1,\ldots , X_n]\). Suppose that \(RI_2\) is a height one ideal generated by \(n\) quadrics so that \(I_2 \subset (w)\) after a possible change of variables. Let \(J = I \cap k[x_1, \ldots , x_n]\). Then \(\mu (I) \le \mu (J)+n+1\) and \(I\) is said to be \(\mu \)-generic if \(\mu (I) = \mu (J) + n+1\). In this article we prove necessary conditions, in terms of \(F\), for an ideal to be \(\mu \)-generic. With some extra assumptions on the exponents of terms of \(F\), we obtain a characterization for height four ideals \(I\) to be \(\mu \)-generic.

Keywords

Gorenstein Artin Algebras Hilbert function \(\mu \)-generic 

Mathematics Subject Classification

13E10 13E15 13C05 

References

  1. Buchsbaum, D.A., Eisenbud, D.: Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Am. J. Math. 99(3), 447–485 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  2. Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)Google Scholar
  3. El Khoury, S., Srinivasan, H.: A class of Gorenstein Artinian algebras of embedding codimension four. Commun. Algebra 37(9), 3259–3277 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  4. Iarrobino, A., Srinivasan, H.: Artin Gorenstein algebras of embedding dimension four: components of \(\mathbb{P}\)Gor(H) for \(H = (1,4,7, \ldots, 1)\). J. Pure Appl. Algebra 201, 62–96 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  5. Kustin, A., Miller, M.: Structure theory for a class of grade four Gorenstein ideals. Trans. Am. Math. Soc. 270(1), 287–307 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  6. Macaulay, F.H.S.: The Algebraic Theory of Modular Systems. Cambridge University Press, Cambridge (1916). (reprinted with a foreword by P. Roberts. Cambridge University Press, London (1994))Google Scholar
  7. Migliore, J., Nagel, U., Zanello, F.: A characterization of Gorenstein Hilbert functions in codimension four with small initial degree. Math. Res. Lett. 15(2), 331–349 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  8. Stanley, R.P.: Hilbert functions of graded algebras. Adv. Math. 28(1), 57–83 (1978)Google Scholar

Copyright information

© The Managing Editors 2014

Authors and Affiliations

  • El Khoury Sabine
    • 1
  • A. V. Jayanthan
    • 2
  • Hema Srinivasan
    • 3
  1. 1.Department of MathematicsAmerican University of BeirutBeirutLebanon
  2. 2.Department of MathematicsIIT MadrasChennaiIndia
  3. 3.Department of MathematicsUniversity of MissouriColumbiaUSA

Personalised recommendations