Finite solvable groups in which semi-normality is a transitive relation

  • A. Ballester-Bolinches
  • J. C. Beidleman
  • A. D. Feldman
  • H. Heineken
  • M. F. Ragland
Original Paper

Abstract

A subgroup H of a finite group G is said to be seminormal in G if every Sylow p-subgroup of G, p a prime, with (|H|, p) = 1 normalizes H. A group G is called an SNT-group if seminormality is a transitive relation in G. Properties of solvable SNT-groups are studied. For example, subgroups of solvable SNT-groups are SNT-groups.

Keywords

Finite groups S-permutability S-semipermutability Seminormal 

Mathematics Subject Classification

20D05 20D10 20F16 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal R.: Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proc. Am. Math. Soc. 47, 77–83 (1975)CrossRefMATHGoogle Scholar
  2. Al-Sharo K., Beidleman J.C., Heineken H., Ragland M.F.: Some characterizations of finite groups in which semipermutability is a transitive relation. Forum Math. 22(5), 855–862 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. Asaad M.: Finite groups in which normality or quasinormality is transitive. Arch. Math. (Basel) 83(4), 289–296 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. Asaad, M., Ballester-Bolinches, A., Esteban-Romero, R.: Products of finite groups. de Gruyter Expositions in Mathematics, vol. 53. Walter de Gruyter GmbH & Co. KG, Berlin (2010)Google Scholar
  5. Ballester-Bolinches R., Esteban-Romero A.: Sylow permutable subnormal subgroups of finite groups. J. Algebra 251(2), 727–738 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. Ballester-Bolinches A., Esteban-Romero R., Ragland M.F.: A note on finite \({{\fancyscript{PST}}}\) -groups. J. Group Theory 10(2), 205–210 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. Beidleman J.C., Ragland M.F.: Subnormal, permutable, and embedded subgroups in finite groups. Central Eur. J. Math. 9(4), 915–921 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. Li Y., Wang L., Wang Y.: Finite groups in which (S-)semipermutability is a transitive relation. Int. J. Algebra 2(1–4), 143–152 (2008)MathSciNetMATHGoogle Scholar
  9. Robinson D.: A course in the theory of groups Graduate Texts in Mathematics, vol 80. 2nd edn. Springer, New York (1996)CrossRefGoogle Scholar

Copyright information

© The Managing Editors 2012

Authors and Affiliations

  • A. Ballester-Bolinches
    • 1
  • J. C. Beidleman
    • 2
  • A. D. Feldman
    • 3
  • H. Heineken
    • 4
  • M. F. Ragland
    • 5
  1. 1.Departament d’ÀlgebraUniversitat de ValènciaValenciaSpain
  2. 2.Department of MathematicsUniversity of KentuckyLexingtonUSA
  3. 3.Department of MathematicsFranklin and Marshall CollegeLancasterUSA
  4. 4.Institut für MathematikUniversität Würzburg, Am HublandWürzburgGermany
  5. 5.Department of MathematicsAuburn University MontgomeryMontgomeryUSA

Personalised recommendations