Some properties of secantoptics of ovals

Open Access
Original Paper

Abstract

In this paper we continue the investigation of further properties of secantoptics introduced and considered by Skrzypiec (Beiträge Algebra Geom. 49(1):205–215, 2008) and by Mozgawa and Skrzypiec (Bull. Belg. Math. Soc. Simon Stevin 16(3):435–445, 2009). We describe properties of secantoptics of ovals of constant width, prove a theorem on tangents to secantoptic and give the converse of the sine theorem for secantoptics.

Keywords

Secantoptic Isoptic Secant Support function 

Mathematics Subject Classification (2000)

53A04 53C44 

References

  1. Benko K., Cieślak W., Góźdź S., Mozgawa W.: On isoptic curves. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 36(1), 47–54 (1990)MATHGoogle Scholar
  2. Chakerian G.D., Groemer H.: Convex bodies of constant width. In: Gruber, P.M., Wills, J.M. (eds) Convexity and its Applications, pp. 49–96. Birkhäuser, Basel (1983)Google Scholar
  3. Cieślak, W., Miernowski, A., Mozgawa, W.: Isoptics of a closed strictly convex curve. In: Global Differential Geometry and Global Analysis (Berlin, 1990), Lecture Notes in Mathematics, vol. 1481, pp. 28–35. Springer, Berlin (1991)Google Scholar
  4. Cieślak W., Miernowski A., Mozgawa W.: Isoptics of a closed strictly convex curve II. Rend. Sem. Mat. Univ. Padova 96, 37–49 (1996)MathSciNetMATHGoogle Scholar
  5. Green J.W.: Sets subtending a constant angle on a circle. Duke Math. J. 17, 263–267 (1950)MathSciNetMATHCrossRefGoogle Scholar
  6. Góźdź S.: On Jordan plane curves which are isoptics of an oval. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 42(1), 127–130 (1996)MATHGoogle Scholar
  7. Góźdź S., Miernowski A., Mozgawa W.: Sine theorem for rosettes. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 44(2), 385–394 (1998)MATHGoogle Scholar
  8. Heil E., Martini H.: Special convex bodies. In: Gruber, P.M., Wills, J.M. (eds) Handbook of Convexity, vol. A, pp. 347–385. North-Holland, Amsterdam (1993)Google Scholar
  9. Matsuura S.: On non-convex curves of constant angle. Lect. Notes Math. 1540, 251–268 (1993)MathSciNetCrossRefGoogle Scholar
  10. Michalska M.: A sufficient condition for the convexity of the area of an isoptic curve of an oval. Rend. Semin. Mat. Univ. Padova 110, 161–169 (2003)MathSciNetMATHGoogle Scholar
  11. Miernowski A., Mozgawa W.: Isoptics of rosettes and rosettes of constant width. Note Mat. 15(2), 203–213 (1995)MathSciNetMATHGoogle Scholar
  12. Miernowski A., Mozgawa W.: Isoptics of pairs of nested closed strictly convex curves and Crofton-type formulas. Beiträge Algebra Geom. 42(1), 281–288 (2001)MathSciNetMATHGoogle Scholar
  13. Mozgawa W., Skrzypiec M.: Crofton formulas and convexity condition for secantoptics. Bull. Belg. Math. Soc. Simon Stevin 16(3), 435–445 (2009)MathSciNetMATHGoogle Scholar
  14. Robertson S.A.: Smooth curves of constant width and transnormality. Bull. Lond. Math. Soc. 16, 264–274 (1984)MATHCrossRefGoogle Scholar
  15. Skrzypiec M.: A note on secantoptics. Beiträge Algebra Geom. 49(1), 205–215 (2008)MathSciNetMATHGoogle Scholar
  16. Szałkowski D.: Isoptics of open rosettes. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59, 119–128 (2005)MATHGoogle Scholar
  17. Szałkowski D.: Isoptics of open rosettes. II. An Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 53(1), 167–176 (2007)MATHGoogle Scholar
  18. Wegner B.: Some global properties and constructions for closed curves in the plane. Geom. Dedicata 29(3), 317–326 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Institute of Mathematics, UMCSLublinPoland

Personalised recommendations