Examples of Kähler–Einstein toric Fano manifolds associated to non-symmetric reflexive polytopes

  • Benjamin NillEmail author
  • Andreas Paffenholz
Original Paper


In this note we report on examples of 7- and 8-dimensional toric Fano manifolds whose associated reflexive polytopes are not symmetric, but they still admit a Kähler–Einstein metric. This answers a question first posed by Batyrev and Selivanova. The examples were found in the classification of ≤8-dimensional toric Fano manifolds obtained by Øbro. We also discuss related open questions and conjectures. In particular, we notice that the alpha-invariants of these examples do not satisfy the assumptions of Tian’s theorem.


Fano varieties Kähler–Einstein manifolds Lattice polytopes Toric varieties 

Mathematics Subject Classification (2000)

Primary 14M25 32Q20 Secondary 14J45 52B20 53C25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batyrev V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994)MathSciNetzbMATHGoogle Scholar
  2. Batyrev V.V., Selivanova E.: Einstein–Kähler metrics on symmetric toric Fano manifolds. J. Reine Angew. Math. 512, 225–236 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bishop R.L., Crittenden R.J.: Geometry of Manifolds. Academic Press, New York (1964)zbMATHGoogle Scholar
  4. Bruns, W., Ichim, B.: Normaliz 2.2 (2009).
  5. Chan K., Leung N.C.: Miyaoka–Yau-type inequalities for Kähler–Einstein manifolds. Commun. Anal. Geom. 15, 359–379 (2007)MathSciNetzbMATHGoogle Scholar
  6. Chel’tsov I.A., Shramov K.A.: Log canonical thresholds of smooth Fano threefolds. Russ. Math. Surv. 63(5), 859–958 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Cheltsov, I., Shramov, C.: Extremal metrics on del Pezzo threefolds (2008). arXiv:0810.1924Google Scholar
  8. Cheltsov, I., Shramov, C.: Del Pezzo zoo (2009). arXiv:0904.0114Google Scholar
  9. Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved problems in geometry. In: Problem Books in Mathematics 2. Springer, New York (1991)Google Scholar
  10. Debarre O.: Higher-dimensional algebraic geometry. Universitext, Springer, New York (2001)zbMATHGoogle Scholar
  11. Ehrhart E.: généralisation du théorème de Minkowski. C. R. Acad. Sci. Paris. 240, 483–485 (1955)MathSciNetzbMATHGoogle Scholar
  12. Futaki, A., Ono, H., Sano, Y.: Hilbert series and obstructions to asymptotic semistability (2008). arXiv:0811.1315Google Scholar
  13. Gauntlett J.P., Martelli D., Sparks J., Yau S.-T.: Obstructions to the Existence of Sasaki–Einstein Metrics. Commun. Math. Phys. 273, 803–827 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. Gritzmann, P., Wills, J.M.: Lattice points. In: Handbook of Convex Geometry, pp. 765–797, North-Holland, Amsterdam (1993)Google Scholar
  15. Joswig, M., Müller, B., Paffenholz, A.: Polymake and lattice polytopes. In: Krattenthaler, C., Strehl, V., Kauers, M. (eds.) DMTCS Proceedings of the FPSAC 2009, pp. 491–502 (2009)Google Scholar
  16. Mabuchi T.: Einstein–Kähler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J. Math. 24, 705–737 (1987)MathSciNetzbMATHGoogle Scholar
  17. McKay, B.: nauty 2.2 (2008).
  18. Nill, B.: Gorenstein toric Fano varieties, PhD thesis, Mathematisches Institut Tübingen (2005).
  19. Nill B.: Complete toric varieties with reductive automorphism group. Mathematische Zeitschrift 252, 767–786 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. Nill, B., Paffenholz, A.: Examples of non-symmetric Kähler–Einstein toric Fano manifolds (2009). arXiv:0905.2054Google Scholar
  21. Øbro, M.: An algorithm for the classification of smooth Fano polytopes (2007). arXiv:0704.0049Google Scholar
  22. Ono, H., Sano, Y., Yotsutani, N.: An example of asymptotically Chow unstable manifolds with constant scalar curvature (2009). arXiv:0906.3836Google Scholar
  23. Pikhurko O.: Lattice points in lattice polytopes. Mathematika 48, 15–24 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  24. Sano, Y.: Multiplier ideal sheaves and the Kähler–Ricci flow on toric Fano manifolds with large symmetry (2008). arXiv:0811.1455Google Scholar
  25. Song J.: The α-invariant on toric Fano manifolds. Am. J. Math. 127, 1247–1259 (2005)zbMATHCrossRefGoogle Scholar
  26. Sparks, J.: New Results in Sasaki-Einstein Geometry. In: Riemannian Topology and Geometric Structures on Manifolds (Progress in Mathematics). Birkhäuser, Basel (2008)Google Scholar
  27. Tian G.: Kähler–Einstein metrics on certain Kähler manifolds with c 1(M) > 0. Invent. Math. 89, 225–246 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  28. Wang X., Zhu X.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, 87–103 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Managing Editors 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of GeorgiaAthensUSA
  2. 2.Fachbereich Mathematik, TU DarmstadtDarmstadtGermany

Personalised recommendations