Approximation of convex bodies by inscribed simplices of maximum volume

Open Access
Original Paper


The Banach-Mazur distance between an arbitrary convex body and a simplex in Euclidean n-space En is at most n + 2. We obtain this estimate as an immediate consequence of our theorem which says that for an arbitrary convex body C in En and for any simplex S of maximum volume contained in C the homothetical copy of S with ratio n + 2 and center in the barycenter of S contains C. In general, this ratio cannot be improved, as it follows from the example of any double-cone.


Approximation Banach–Mazur distance Convex body Double-cone Simplex Volume 

Mathematics Subject Classification (2000)

52A21 52A10 46B20 


  1. Bálint V., Bálintová A., Branická M., Gresák P., Hrinko I., Novotný P., Stacho M.: Translative covering by homothetic copies. Geom. Dedicata. 46, 173–180 (1993) Zbl 0783.52012MathSciNetMATHCrossRefGoogle Scholar
  2. Blaschke W.: Über affine Geometrie III: Eine Minimumeigenschaft der Ellipse. Leipziger Ber. 69, 3–12 (1917) Zbl JFM 46.1112.02Google Scholar
  3. Fleicher R., Mehlhorn M., Rote G., Welzl E., Yap C.: Simultaneous inner and outer approximation of shapes. Algoritmica 8, 365–389 (1992) Zbl 0760.68083CrossRefGoogle Scholar
  4. Grünbaum, B.: Measures of symmetry for convex sets. 1963 Proc. Sympos. Pure Math., Vol. VII, 233–170, Amer. Math. Soc. Providence, R.I. Zbl 0142.20503Google Scholar
  5. Hudelson, M., Klee V., Larman, D.: Largest j-simplices in d-cubes: some relatives to the Hadamard maximum determinant problem. Linear Algebra Appl. 241–243, 519–598 (1996). Zbl 0861.15004Google Scholar
  6. John, F.: Extremum problems with inequalities as subsidiary conditions. Courant Anniversary Volume, 187–204 (1948). Zbl 0034.10503Google Scholar
  7. Lassak M.: On the Banach–Mazur distance between convex bodies. J. Geom. 41, 11–12 (1992)Google Scholar
  8. Lassak M.: Approximation of convex bodies by triangles. Proc. Amer. Math. Soc. 115, 207–210 (1992) Zbl 0757.52008MathSciNetMATHCrossRefGoogle Scholar
  9. Lassak M.: Packing an n-dimensional convex body by n + 1 homothetical copies. Rev. Roumaine Math. Pures Appl. 51, 43–47 (2006) Zbl 1119.52304MathSciNetMATHGoogle Scholar
  10. McKinney J.R.: On maximal simplices insribed in central convex sets. Mathematika 21, 38–44 (1974) Zbl 0288.52008MathSciNetMATHCrossRefGoogle Scholar
  11. Novotný P.: Approximation of convex bodies by simplices. Geom. Dedicata 50, 53–55 (1994)MathSciNetMATHCrossRefGoogle Scholar
  12. Rudelson, M.: Distances between non-symmetric convex bodies and the MM*-estimate. Positivity 4, no 2, 161–178 (2000). Zbl 0959.52008Google Scholar
  13. Szarek, S.J.: Convexity, complexity and high dimensions, Proceedings of the International Congress of Mathemeticians, Madrid, Spain, August 22–30, 2006. Volume II: Invited lectures. Zürich: European Mathematical Society (EMS). 1599–1621 (2006). Zbl 1120.46004Google Scholar
  14. Tomczak-Jaegermann, N.: Banach-Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientifical and Technical, New York (1989). Zbl 0721.4604Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Institute of Mathematics and PhysicsUniversity of TechnologyBydgoszczPoland

Personalised recommendations