On the self-perimeter of quadrangles for gauges

Original Paper

Abstract

We give a lower bound on the self-perimeter of unit circles of convex distance functions (gauges) that have the shapes of quadrangles.

Keywords

Convex distance functions Gauges Minkowski plane Normalizing quadrangle Normed planes Self-perimeter Unit circles 

Mathematics Subject Classification (2000)

52A10 52A21 52A38 

References

  1. Bonnesen T., Fenchel W.: Theorie der konvexen Körper. Springer, Berlin (1934)MATHGoogle Scholar
  2. Chakerian G.D.: Mixed areas and self-circumference of a convex body. Arch. Math. 34, 81–83 (1980)CrossRefMATHMathSciNetGoogle Scholar
  3. Chakerian G.D., Talley W.K.: Some properties of the self-circumference of convex sets. Arch. Math. 20, 431–443 (1969)CrossRefMATHMathSciNetGoogle Scholar
  4. Ghandehari M.A., O’Neill E.J.: Self-circumference of rotors. Acta Math. Hung. 79, 179–190 (1998)CrossRefMATHMathSciNetGoogle Scholar
  5. Goła̧b S.: Some metric problems in the geometry of Minkowski. (Polish, French summary). Prace Akademii Górniczej w Krakowie 6, 1–79 (1932)Google Scholar
  6. Goła̧b S.: Sur la longneur de l’indicatrice dans la geomètrie plane de Minkowski. Colloq. Math. 15, 141–144 (1966)MathSciNetGoogle Scholar
  7. Grünbaum B.: Self-circumference of convex sets. Colloq. Math. 13, 55–57 (1964)MATHMathSciNetGoogle Scholar
  8. Grünbaum B.: The perimeter of Minkowski unit discs. Colloq. Math. 15, 135–139 (1966)MATHMathSciNetGoogle Scholar
  9. Leichtweiß, K.: Konvexe Mengen. Deutscher Verlag der Wissenschaften, Berlin (1980)Google Scholar
  10. Martini H., Swanepoel K.J., Weiß G.: The geometry of Minkowski spaces—a survey, I. Expo. Math. 19, 97–142 (2001)MATHMathSciNetGoogle Scholar
  11. Makeev V.V.: On upper estimates for the perimeter of non-symmetric unit circles of a Minkowski plane. Zap. Nauchn. Semin. LOMI 299, 262–266 (2003)Google Scholar
  12. Minkowski, H.: Geometrie der Zahlen. Leipzig-Berlin (1910)Google Scholar
  13. Shcherba A.I.: On estimates for the self-perimeter of the unit circle of a Minkowski plane. Tr. Rubtsovsk. Ind. Inst. 12, 96–107 (2003)MATHGoogle Scholar
  14. Shcherba, A.I.: Unit disk of smallest self-perimeter in a Minkowski plane. Mat. Zametki 81, 125–135 (2006). English translation Mathematics Notes 81(1), 108–116 (2007)Google Scholar
  15. Thompson A.C.: Minkowski Geometry. Cambridge University Press, Cambridge (1996)MATHGoogle Scholar

Copyright information

© The Managing Editors 2011

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of TechnologyChemnitzGermany
  2. 2.Department of Industrial Computer TechnologiesCherkassy State Technological UniversityCherkassyUkraine

Personalised recommendations