Generalized inflection points of very general effective divisors on smooth curves

Original Paper
  • 46 Downloads

Abstract

Let E be a very general effective divisor of degree d on a smooth curve C of genus g. We study inflection points on linear systems |aE | for an integer a ≥ 1. They are called generalized inflection points of the invertible sheaf \({\mathcal{O}_C(E)}\). In case \({P\notin E}\) is a generalized inflection point of \({\mathcal{O}_C(E)}\) then it is a normal generalized inflection point. In case \({P\in E}\) then P has minimal vanishing sequences for E.

Keywords

Curve Linear system Inflection point 

Mathematics Subject Classification (2000)

14H51 14H55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbarello E., Cornalba M.: Su una congettura di Petri. Comment. Math. Helv. 56, 1–38 (1981)CrossRefMATHMathSciNetGoogle Scholar
  2. Coppens M.: Generalized inflection points of very general line bundles on smooth curves. Ann. Mat. Pura Appl. 187(4), 605–609 (2008)CrossRefMATHMathSciNetGoogle Scholar
  3. Farkas G.: Higher ramification and varieties of secant divisors on the generic curve. J. Lond. Math. Soc. 78, 418–440 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. Grothendieck, A.: Techniques de construction et théorèmes d’existence en géométrie algébrique IV. Les schémas de Hilbert. Sém. Bourbaki 13(221) (1960/61)Google Scholar
  5. Horikawa E.: On deformations of holomorphic maps I. J. Math. Soc. Japan 25, 372–376 (1973)CrossRefMATHMathSciNetGoogle Scholar
  6. Lange H.: Moduli spaces of algebraic curves with rational maps. Math. Proc. Camb. Philos. Soc. 78, 283–292 (1975)CrossRefMATHGoogle Scholar
  7. Sernesi, E.: Deformations of algebraic schemes. Grundlehren der mathematischen Wissenschaften 334 (2006), Springer-VerlagGoogle Scholar

Copyright information

© The Managing Editors 2011

Authors and Affiliations

  1. 1.Departement Industrieel Ingenieur en BiotechniekKatholieke Hogeschool KempenGeelBelgium
  2. 2.Dept. Wiskunde Groep AlgebraK.U. LeuvenGeelBelgium

Personalised recommendations