A construction of the automorphism groups of indecomposable S-rings over \({Z_{2^n}}\)

Original Paper

Abstract

Automorphism groups of indecomposable S-rings over cyclic groups \({Z_{2^n}}\) are considered. Such rings have been parameterized by atomic sequences, a collection of numerical data, introduced by the author (Lothar. Comb. 51 (Bb51h), 2005). In this paper an explicit construction of the groups is presented in terms of the atomic sequences.

Keywords

S-ring Decomposable S-ring Automorphism group of an S-ring 

Mathematics Subject Classification (2000)

05E15 05E18 05E30 20B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evdokimov S.A., Ponomarenko I.N.: On a family of Schur rings over a finite cyclic group. St. Petersbg. Math. J. 13(3), 441–451 (2002)MATHMathSciNetGoogle Scholar
  2. Faradzhev I.A., Ivanov A.A., Klin M.H.: Galois correspondence between permutation groups and cellular rings (association schemes). Graphs Comb. 6, 303–332 (1990)CrossRefMATHMathSciNetGoogle Scholar
  3. Faradzhev, I.A., Klin, M.H., Muzychuk, M.E.: Cellular rings and groups of automorphisms of graphs. In: Faradzhev, I.A. et al. (eds.) Investigations on algebraic theory of combinatorial objects, mathematics and its applications, vol. 84, pp. 1–152. Kluwer, Dordrecht (1994)Google Scholar
  4. Gol’fand, J.J., Najmark, N.L., Pöschel, R.: The structure of S-rings over \({Z_{2^m}}\). Akad. der Wiss. der DDR, Inst. für Math., Preprint P-MATH-01/85, 1–30 (1985)Google Scholar
  5. Klin, M.H.: Automorphism groups of circulant graphs. Tagungsbericht of the conference: applicable algebra, Oberwolfach, 14–20 February (1993)Google Scholar
  6. Klin, M.H., Liskovets, V., Pöschel, R.: Analytical enumeration of circulant graphs with prime-squared number of vertices. Sèm. Lothar. Comb. 36 (B36d), 1–36 (1996)Google Scholar
  7. Klin, M.Ch., Najmark, N.L., Pöschel, R.: Schur rings over \({Z_{2^m}}\). Akad. der Wiss. der DDR Inst. für Math., Preprint P-MATH-14/81, 1–30 (1981)Google Scholar
  8. Klin, M.H., Pöschel, R.: The König Problem, the isomorphism problem for cyclic graphs and the method of Schur rings. In: Algebraic Methods in Graph Theory, Szeged, 1978, Colloq. Math. Soc. János Bolyai, vol. 25, pp. 405–434. North-Holland, Amsterdam (1981)Google Scholar
  9. Klin, M.H., Pöschel, R.: Circulant graphs via Schur ring theory. Automorphism groups of circulant graphs on p m vertices, p an odd prime (Manuscript)Google Scholar
  10. Kovács, I.: The number of indecomposable S-rings over a cyclic 2-group. Sèm. Lothar. Comb. 51 (Bb51h) (2005)Google Scholar
  11. Leung K.H., Ma S.L.: The structure of Schur rings over cyclic groups. J. Pure Appl. Algebra 66, 287–302 (1990)CrossRefMATHMathSciNetGoogle Scholar
  12. Liskovets V., Pöschel R.: Counting circulant graphs of prime-power order by decomposing into orbit enumeration problems. Discret. Math. 214, 173–191 (2000)CrossRefMATHGoogle Scholar
  13. Muzychuk M.E., Klin M.H., Pöschel R.: The isomorphism problem for circulant graphs via Schur ring theory. DIMACS Ser. Discret. Math. Theor. Comput. Sci. 56, 241–264 (2001)Google Scholar
  14. Pöschel R.: Untersuchungen von S-ringen, insbesondere im Gruppenring von p-Gruppen. Math. Nachr. 60, 1–27 (1974)CrossRefMATHMathSciNetGoogle Scholar
  15. Weisfeiler B.J.: On construction and identification of graphs. Lecture Notes in Mathematics. vol. 558. Springer, Berlin (1976)Google Scholar
  16. Wielandt H.: Finite Permutation Groups. Academic Press, New York (1964)MATHGoogle Scholar

Copyright information

© The Managing Editors 2011

Authors and Affiliations

  1. 1.FAMNIT, University of PrimorskaKoperSlovenia

Personalised recommendations