Genetic variation in alcohol dehydrogenase is associated with neurocognition in men with HIV and history of alcohol use disorder: preliminary findings

  • Rowan SalonerEmail author
  • Emily W. Paolillo
  • Maulika Kohli
  • Sarah S. Murray
  • David J. Moore
  • Igor Grant
  • Mariana Cherner


The co-occurrence of HIV and alcohol use disorder (AUD) amplifies risk for neural injury and neurocognitive deficits. However, the substantial neurocognitive heterogeneity across HIV+/AUD+ individuals suggests inter-individual differences in vulnerability to the neurotoxicity of comorbid HIV/AUD. Genetic variation in alcohol dehydrogenase (ADH), which metabolizes ethanol, may contribute to inter-individual neurocognitive variability. We evaluated associations between five ADH single-nucleotide polymorphisms (SNPs) and neurocognition in men stratified by HIV and lifetime AUD status. Neurobehavioral assessments were administered to 153 men. Three-way ANOVAs examined the interaction of HIV, AUD, and ADH SNPs on global and domain-specific demographically corrected T scores. Follow-up ANCOVAs adjusted for age, estimated verbal IQ, depression, and remote non-alcohol substance use disorders. HIV/AUD groups differed globally and for verbal fluency, working memory, executive function, and processing speed T scores specifically, with HIV+/AUD+ exhibiting the poorest performance. ADH4 (rs1126671) was associated with large effects on working memory (d = − 1.16, p = .001) and executive function (d = − 0.77, p = .028) selectively in HIV+/AUD+, which remained significant in ANCOVA models. ADH1A (rs3819197) moderated the deleterious effects of HIV+/AUD+ on processing speed such that HIV+/AUD+ related to slower information processing in A allele carriers but not GG homozygotes (ps < 0.03). Preliminary findings suggest genetic variation in the ADH pathway moderates the deleterious neurocognitive effects of comorbid HIV/AUD. Differential metabolism of heavy ethanol exposure may compromise neurocognition under conditions of neurobiological stress, such as in HIV infection. The functional effects on ethanol metabolism of ADH SNPs examined in this study remain poorly understood, warranting further examination of pharmacokinetic mechanisms mediating ADH gene-neurobehavior relationships in HIV.


Alcohol dehydrogenase Single-nucleotide polymorphism Cognition HIV-associated neurocognitive disorder Alcohol 



Data for this study were collected as part of a NIDA-funded research program that includes the Translational Methamphetamine AIDS Research Center (TMARC), supported by award P50DA026306 and the program projects on NeuroAIDS Effects of Methamphetamine and NeuroAIDS Effects of Methamphetamine & HCV, supported by award R01DA012065, as well as by award R01DA026334: COMT Genotype and Risky Decision-Making in HIV and Methamphetamine Dependence. Stipend support to RS is funded by NIA award F31AG064989. Stipend support to EWP is funded by NIAAA award F31AA027198. Stipend support to MK is funded by NIAAA award T32AA013525.

The Translational Methamphetamine AIDS Research Center (TMARC) is supported by Center award P50DA026306 from the National Institute on Drug Abuse (NIDA) and is affiliated with the University of California, San Diego (UCSD), the Sanford-Burnham Medical Discovery Institute (SBMDI), and the University of California, Irvine (UCI). The TMARC comprises: Administrative Coordinating Core (ACC) – Executive Unit: Director – Igor Grant, M.D.; Co-Directors – Ronald J. Ellis, M.D., Ph.D., Scott L. Letendre, M.D., and Cristian L. Achim, M.D., Ph.D.; Center Manager – Mariana Cherner, Ph.D.; Associate Center Managers – Erin E. Morgan, Ph.D. and Jared Young, Ph.D.; Data Management and Information Systems (DMIS) Unit: Anthony C. Gamst, Ph.D. (Unit Chief), Clint Cushman, B.A. (Unit Manager); ACC – Statistics Unit: Florin Vaida, Ph.D. (Unit Chief), Ian S. Abramson, Ph.D., Reena Deutsch, Ph.D., Anya Umlauf, M.S.; ACC – Participant Unit: J. Hampton Atkinson, M.D. (Unit Chief), Jennifer Marquie-Beck, M.P.H. (Unit Manager); Behavioral Assessment and Medical (BAM) Core – Neuromedical and Laboratory Unit (NLU): Scott L. Letendre, M.D. (Core Co-Director/NLU Chief), Ronald J. Ellis, M.D., Ph.D.; BAM Core – Neuropsychiatric Unit (NPU): Robert K. Heaton, Ph.D. (Core Co-Director/NPU Chief), J. Hampton Atkinson, M.D., Thomas D. Marcotte, Ph.D., Erin E. Morgan, Ph.D., Matthew Dawson (NPU Manager); Neuroimaging (NI) Core: Gregory G. Brown, Ph.D. (Core Director), Thomas T. Liu, Ph.D., Miriam Scadeng, Ph.D., Christine Fennema-Notestine, Ph.D., Sarah L. Archibald, M.A., John R. Hesselink, M.D., Mary Jane Meloy, Ph.D., Craig E.L. Stark, Ph.D.; Neuroscience and Animal Models (NAM) Core: Cristian L. Achim, M.D., Ph.D. (Core Director), Marcus Kaul, Ph.D., Virawudh Soontornniyomkij, M.D.; Pilot and Developmental (PAD) Core: Mariana Cherner, Ph.D. (Core Director), Stuart A. Lipton, M.D., Ph.D.; Project 1: Arpi Minassian, Ph.D. (Project Director), William Perry, Ph.D., Mark A. Geyer, Ph.D., Jared W. Young, Ph.D.; Project 2: Amanda B. Grethe, Ph.D. (Project Director), Susan F. Tapert, Ph.D., Assawin Gongvatana, Ph.D.; Project 3: Erin E. Morgan, Ph.D. (Project Director), Igor Grant, M.D.; Project 4: Svetlana Semenova, Ph.D. (Project Director).; Project 5: Marcus Kaul, Ph.D. (Project Director).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Government.


  1. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30:8285–8295PubMedPubMedCentralCrossRefGoogle Scholar
  2. Beck A, Steer R, Brown G (1996) Manual for Beck Depression Inventory II (BDI-II). Psychology Corporation, San AntonioGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  4. Blackstone K, Iudicello JE, Morgan EE, Weber E, Moore DJ, Franklin DR, Ellis RJ, Grant I, Woods SP (2013) Human immunodeficiency virus infection heightens concurrent risk of functional dependence in persons with long-term methamphetamine use. J Addict Med 7:255–263PubMedPubMedCentralCrossRefGoogle Scholar
  5. Braithwaite RS, Conigliaro J, Roberts MS, Shechter S, Schaefer A, McGinnis K, Rodriguez MC, Rabeneck L, Bryant K, Justice AC (2007) Estimating the impact of alcohol consumption on survival for HIV+ individuals. AIDS Care 19:459–466PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bryant KJ (2006) Expanding research on the role of alcohol consumption and related risks in the prevention and treatment of HIV/AIDS. Subst Use Misuse 41:1465–1507PubMedCrossRefGoogle Scholar
  7. Butterworth RF (2014) Hepatic encephalopathy in alcoholic cirrhosis. Handb Clin Neurol 125:589–602PubMedCrossRefGoogle Scholar
  8. Cederbaum AI (2012) Alcohol metabolism. Clin Liver Dis 16:667–685PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cohen RA, Gullett JM, Porges EC, Woods AJ, Lamb DG, Bryant VE, McAdams M, Tashima K, Cook R, Bryant K (2019) Heavy alcohol use and age effects on HIV-associated neurocognitive function. Alcohol Clin Exp Res 43:147–157PubMedGoogle Scholar
  10. Day AM, Kahler CW, Ahern DC, Clark US (2015) Executive functioning in alcohol use studies: a brief review of findings and challenges in assessment. Curr Drug Abuse Rev 8:26–40PubMedPubMedCentralCrossRefGoogle Scholar
  11. Douglas KM, Porter RJ (2009) Longitudinal assessment of neuropsychological function in major depression. Aust N Z J Psychiatry 43:1105–1117PubMedCrossRefGoogle Scholar
  12. Durvasula RS, Miller EN, Myers HF, Wyatt GE (2001) Predictors of neuropsychological performance in HIV positive women. J Clin Exp Neuropsychol 23:149–163PubMedCrossRefGoogle Scholar
  13. Edenberg HJ (2007) The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 30:5–13PubMedPubMedCentralGoogle Scholar
  14. Edenberg HJ, Xuei X, Chen H, Tian H, Wetherill LF, Dick DM, Almasy L, Bierut L, Bucholz KK, Goate A, Hesselbrock V, Kuperman S, Nurnberger J, Porjesz B, Rice J, Schuckit M, Tischfield J, Begleiter H, Foroud T (2006) Association of alcohol dehydrogenase genes with alcohol dependence: a comprehensive analysis. Hum Mol Genet 15:1539–1549PubMedCrossRefGoogle Scholar
  15. Fama R, Rosenbloom MJ, Nichols BN, Pfefferbaum A, Sullivan EV (2009) Working and episodic memory in HIV infection, alcoholism, and their comorbidity: baseline and 1-year follow-up examinations. Alcohol Clin Exp Res 33:1815–1824PubMedPubMedCentralCrossRefGoogle Scholar
  16. Foddai M, Dosia G, Spiga S, Diana M (2004) Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 29:530–536PubMedCrossRefGoogle Scholar
  17. Foley JM, Ettenhofer ML, Kim MS, Behdin N, Castellon SA, Hinkin CH (2012) Cognitive reserve as a protective factor in older HIV-positive patients at risk for cognitive decline. Appl Neuropsychol Adult 19:16–25PubMedPubMedCentralCrossRefGoogle Scholar
  18. Galvan FH, Bing EG, Fleishman JA, London AS, Caetano R, Burnam MA, Longshore D, Morton SC, Orlando M, Shapiro M (2002) The prevalence of alcohol consumption and heavy drinking among people with HIV in the United States: results from the HIV Cost and Services Utilization Study. J Stud Alcohol 63:179–186PubMedCrossRefGoogle Scholar
  19. Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H (2017) HIV, tat and dopamine transmission. Neurobiol Dis 105:51–73PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gierski F, Hubsch B, Stefaniak N, Benzerouk F, Cuervo-Lombard C, Bera-Potelle C, Cohen R, Kahn JP, Limosin F (2013) Executive functions in adult offspring of alcohol-dependent probands: toward a cognitive endophenotype? Alcohol Clin Exp Res 37(Suppl 1):E356–E363PubMedCrossRefGoogle Scholar
  21. Haorah J, Heilman D, Diekmann C, Osna N, Donohue TM Jr, Ghorpade A, Persidsky Y (2004) Alcohol and HIV decrease proteasome and immunoproteasome function in macrophages: implications for impaired immune function during disease. Cell Immunol 229:139–148PubMedCrossRefGoogle Scholar
  22. Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y (2008) Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med 45:1542–1550PubMedPubMedCentralCrossRefGoogle Scholar
  23. Heaton RK, Taylor MJ, Manly J (2003) Demographic effects and use of demographically corrected norms with the WAIS-III and WMS-III. In: Clinical interpretation of the WAIS-III and WMS-III. Academic Press, San Diego, pp 181–210CrossRefGoogle Scholar
  24. Heaton RK, Miller SW, Taylor MJ, Grant I (2004) Revised comprehensive norms for an expanded Halstead Reitan battery: demographically adjusted neuropsychological norms for African American and Caucasian adults. Psychological Assessment Resources, Inc, LutzGoogle Scholar
  25. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–2096PubMedPubMedCentralCrossRefGoogle Scholar
  26. Heinz AJ, Fogler KA, Newcomb ME, Trafton JA, Bonn-Miller MO (2014) Problematic alcohol use among individuals with HIV: relations with everyday memory functioning and HIV symptom severity. AIDS Behav 18:1302–1314PubMedCrossRefGoogle Scholar
  27. Hodgkinson CA, Yuan Q, Xu K, Shen PH, Heinz E, Lobos EA, Binder EB, Cubells J, Ehlers CL, Gelernter J, Mann J, Riley B, Roy A, Tabakoff B, Todd RD, Zhou Z, Goldman D (2008) Addictions biology: haplotype-based analysis for 130 candidate genes on a single array. Alcohol Alcohol 43:505–515PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hurley TD, Edenberg HJ (2012) Genes encoding enzymes involved in ethanol metabolism. Alcohol Res 34:339–344PubMedPubMedCentralGoogle Scholar
  29. Jelski W, Strumnik A, Orywal K, Lapinski TW, Swiderska M, Szmitkowski M (2016) Serum alcohol dehydrogenase and aldehyde dehydrogenase activity in the course of hepatitis C. Clin Lab 62:2155–2159PubMedCrossRefGoogle Scholar
  30. Jelski W, Strumnik A, Orywal K, Lapinski TW, Swiderska M, Szmitkowski M (2018) Activity of alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in sera of patients with hepatitis C. Arch Med Sci 14:281–287PubMedCrossRefGoogle Scholar
  31. Justice AC, McGinnis KA, Tate JP, Braithwaite RS, Bryant KJ, Cook RL, Edelman EJ, Fiellin LE, Freiberg MS, Gordon AJ, Kraemer KL, Marshall BD, Williams EC, Fiellin DA (2016) Risk of mortality and physiologic injury evident with lower alcohol exposure among HIV infected compared with uninfected men. Drug Alcohol Depend 161:95–103PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kennedy CA, Zerbo E (2014) HIV-related neurocognitive disorders and drugs of abuse: mired in confound, surrounded by risk. Curr Addict Rep 1:229–236CrossRefGoogle Scholar
  33. Koutsilieri E, ter Meulen V, Riederer P (2001) Neurotransmission in HIV associated dementia: a short review. J Neural Transm (Vienna) 108:767–775CrossRefGoogle Scholar
  34. Kumar AM, Ownby RL, Waldrop-Valverde D, Fernandez B, Kumar M (2011) Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance. J Neuro-Oncol 17:26–40Google Scholar
  35. Malaspina L, Woods SP, Moore DJ, Depp C, Letendre SL, Jeste D, Grant I, Group HIVNRP (2011) Successful cognitive aging in persons living with HIV infection. J Neuro-Oncol 17:110–119Google Scholar
  36. McDermott LM, Ebmeier KP (2009) A meta-analysis of depression severity and cognitive function. J Affect Disord 119:1–8PubMedCrossRefGoogle Scholar
  37. Molina PE, Bagby GJ, Nelson S (2014) Biomedical consequences of alcohol use disorders in the HIV-infected host. Curr HIV Res 12:265–275PubMedPubMedCentralCrossRefGoogle Scholar
  38. Narendran R, Mason NS, Paris J, Himes ML, Douaihy AB, Frankle WG (2014) Decreased prefrontal cortical dopamine transmission in alcoholism. Am J Psychiatry 171:881–888PubMedPubMedCentralCrossRefGoogle Scholar
  39. Norman MA, Moore DJ, Taylor M, Franklin D Jr, Cysique L, Ake C, Lazarretto D, Vaida F, Heaton RK, Group H (2011) Demographically corrected norms for African Americans and Caucasians on the Hopkins Verbal Learning Test-Revised, Brief Visuospatial Memory Test-Revised, Stroop Color and Word Test, and Wisconsin Card Sorting Test 64-Card Version. J Clin Exp Neuropsychol 33:793–804PubMedPubMedCentralCrossRefGoogle Scholar
  40. Opdebeeck C, Martyr A, Clare L (2016) Cognitive reserve and cognitive function in healthy older people: a meta-analysis. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 23:40–60PubMedCrossRefGoogle Scholar
  41. Pandrea I, Happel KI, Amedee AM, Bagby GJ, Nelson S (2010) Alcohol’s role in HIV transmission and disease progression. Alcohol Res Health 33:203–218PubMedPubMedCentralGoogle Scholar
  42. Paolillo EW, Gongvatana A, Umlauf A, Letendre SL, Moore DJ (2017) At-risk alcohol use is associated with antiretroviral treatment nonadherence among adults living with HIV/AIDS. Alcohol Clin Exp Res 41:1518–1525PubMedPubMedCentralCrossRefGoogle Scholar
  43. Paolillo EW, Inkelis SM, Heaton A, Saloner R, Moore RC, Moore DJ (2019) Age of last alcohol use disorder relates to processing speed among older adults living with HIV. Alcohol Alcohol 54:139–147PubMedCrossRefGoogle Scholar
  44. Pfefferbaum A, Rosenbloom MJ, Sassoon SA, Kemper CA, Deresinski S, Rohlfing T, Sullivan EV (2012) Regional brain structural dysmorphology in human immunodeficiency virus infection: effects of acquired immune deficiency syndrome, alcoholism, and age. Biol Psychiatry 72:361–370PubMedPubMedCentralCrossRefGoogle Scholar
  45. Price JC, Thio CL (2010) Liver disease in the HIV-infected individual. Clin Gastroenterol Hepatol 8:1002–1012PubMedPubMedCentralCrossRefGoogle Scholar
  46. Rehm J, Probst C, Shield KD, Shuper PA (2017) Does alcohol use have a causal effect on HIV incidence and disease progression? A review of the literature and a modeling strategy for quantifying the effect. Popul Health Metrics 15:4CrossRefGoogle Scholar
  47. Rosenbloom MJ, Sullivan EV, Sassoon SA, O'Reilly A, Fama R, Kemper CA, Deresinski S, Pfefferbaum A (2007) Alcoholism, HIV infection, and their comorbidity: factors affecting self-rated health-related quality of life. J Stud Alcohol Drugs 68:115–125PubMedCrossRefGoogle Scholar
  48. Rosenbloom MJ, Sullivan EV, Pfefferbaum A (2010) Focus on the brain: HIV infection and alcoholism: comorbidity effects on brain structure and function. Alcohol Res Health 33:247–257PubMedPubMedCentralGoogle Scholar
  49. Ross JM, Duperrouzel J, Vega M, Gonzalez R (2016) The neuropsychology of risky sexual behavior. J Int Neuropsychol Soc 22:586–594PubMedPubMedCentralCrossRefGoogle Scholar
  50. Rothlind JC, Greenfield TM, Bruce AV, Meyerhoff DJ, Flenniken DL, Lindgren JA, Weiner MW (2005) Heavy alcohol consumption in individuals with HIV infection: effects on neuropsychological performance. J Int Neuropsychol Soc 11:70–83PubMedPubMedCentralCrossRefGoogle Scholar
  51. Saloner R, Marquine MJ, Sundermann EE, Hong S, McCutchan JA, Ellis RJ, Heaton RK, Grant I, Cherner M (2019) COMT Val158Met polymorphism, cardiometabolic risk, and nadir CD4 synergistically increase risk for neurocognitive impairment in men living with HIV. J Acquir Immune Defic Syndr 81:e148–e157PubMedCrossRefGoogle Scholar
  52. Sarc L, Lipnik-Stangelj M (2009) Comparison of ethanol and acetaldehyde toxicity in rat astrocytes in primary culture. Arh Hig Rada Toksikol 60:297–305PubMedCrossRefGoogle Scholar
  53. Seitz HK, Stickel F (2010) Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr 5:121–128PubMedCrossRefGoogle Scholar
  54. Sharrett-Field L, Butler TR, Reynolds AR, Berry JN, Prendergast MA (2013) Sex differences in neuroadaptation to alcohol and withdrawal neurotoxicity. Pflugers Arch 465:643–654PubMedPubMedCentralCrossRefGoogle Scholar
  55. Spitzer R, Williams J, Gibbon M, First M (1995) Structured clinical interview for DSM-IV. American Psychiatric Press, Washington, DCGoogle Scholar
  56. Strömberg P, Svensson S, Hedberg J, Nordling E, Höög J-O (2002) Identification and characterisation of two allelic forms of human alcohol dehydrogenase 2. Cell Mol Life Sci 59:552–559PubMedCrossRefGoogle Scholar
  57. Sun AY, Sun GY (2001) Ethanol and oxidative mechanisms in the brain. J Biomed Sci 8:37–43PubMedCrossRefGoogle Scholar
  58. Sundermann EE, Bishop JR, Rubin LH, Little DM, Meyer VJ, Martin E, Weber K, Cohen M, Maki PM (2015) Genetic predictor of working memory and prefrontal function in women with HIV. J Neuro-Oncol 21:81–91Google Scholar
  59. Sundermann EE, Heaton RK, Pasipanodya E, Moore RC, Paolillo EW, Rubin LH, Ellis R, Moore DJ (2018) Sex differences in HIV-associated cognitive impairment. Aids 32:2719–2726PubMedPubMedCentralCrossRefGoogle Scholar
  60. Tedaldi EM, Minniti NL, Fischer T (2015) HIV-associated neurocognitive disorders: the relationship of HIV infection with physical and social comorbidities. Biomed Res Int 2015:641913PubMedPubMedCentralCrossRefGoogle Scholar
  61. Thomasson HR (1995) Gender differences in alcohol metabolism. Physiological responses to ethanol. Recent Dev Alcohol 12:163–179PubMedGoogle Scholar
  62. Trantham-Davidson H, Chandler LJ (2015) Alcohol-induced alterations in dopamine modulation of prefrontal activity. Alcohol 49:773–779PubMedPubMedCentralCrossRefGoogle Scholar
  63. Trantham-Davidson H, Burnett EJ, Gass JT, Lopez MF, Mulholland PJ, Centanni SW, Floresco SB, Chandler LJ (2014) Chronic alcohol disrupts dopamine receptor activity and the cognitive function of the medial prefrontal cortex. J Neurosci 34:3706–3718PubMedPubMedCentralCrossRefGoogle Scholar
  64. Trantham-Davidson H, Centanni SW, Garr SC, New NN, Mulholland PJ, Gass JT, Glover EJ, Floresco SB, Crews FT, Krishnan HR, Pandey SC, Chandler LJ (2017) Binge-like alcohol exposure during adolescence disrupts dopaminergic neurotransmission in the adult prelimbic cortex. Neuropsychopharmacology 42:1024–1036PubMedCrossRefGoogle Scholar
  65. Vance DE (2013) The cognitive consequences of stigma, social withdrawal, and depression in adults aging with HIV. J Psychosoc Nurs Ment Health Serv 51:18–20PubMedCrossRefGoogle Scholar
  66. Walker KA, Brown GG (2018) HIV-associated executive dysfunction in the era of modern antiretroviral therapy: a systematic review and meta-analysis. J Clin Exp Neuropsychol 40:357–376PubMedCrossRefGoogle Scholar
  67. Wilkinson G, Robertson G (2006) Wide Range Achievement Test-4 (WRAT-4). Lutz, Psychological Assessment Resources IncGoogle Scholar
  68. Wolkowitz OM, Epel ES, Reus VI, Mellon SH (2010) Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety 27:327–338PubMedCrossRefGoogle Scholar
  69. World Health Organization (1998) Composite Diagnositic International Interview (CIDI, version 2.1). World Health Organization, GenevaGoogle Scholar
  70. Yen CH, Yeh YW, Liang CS, Ho PS, Kuo SC, Huang CC, Chen CY, Shih MC, Ma KH, Peng GS, Lu RB, Huang SY (2015) Reduced dopamine transporter availability and neurocognitive deficits in male patients with alcohol dependence. PLoS One 10:e0131017PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2020

Authors and Affiliations

  1. 1.Joint Doctoral Program in Clinical PsychologySan Diego State University/University of California San DiegoSan DiegoUSA
  2. 2.Department of Psychiatry, HIV Neurobehavioral Research ProgramUniversity of California San DiegoSan DiegoUSA
  3. 3.Department of PathologyUniversity of California San DiegoLa JollaUSA

Personalised recommendations