Advertisement

The Veterans Aging Cohort Study Index is not associated with HIV-associated neurocognitive disorders in Uganda

  • Violet Awori
  • Gertrude Nakigozi
  • Alice Kisakye
  • James Batte
  • Aggrey Anok
  • Richard Mayanja
  • Noeline Nakasujja
  • Kevin R. Robertson
  • Ronald H. Gray
  • Maria J. Wawer
  • Ned Sacktor
  • Deanna SaylorEmail author
Short Communication

Abstract

The Veterans Aging Cohort Study (VACS) Index has been associated with HIV-associated neurocognitive disorder (HAND) in some populations but has not been studied in sub-Saharan Africa. We investigated whether the VACS Index is associated with HAND in a rural population in Rakai, Uganda. HIV-infected (HIV+) adults on antiretroviral therapy underwent a neurocognitive battery for determination of HAND stage using Frascati criteria. VACS component scores were recorded for all participants. Out of 156 study participants, HAND stages were 49% normal cognition, 15% asymptomatic neurocognitive impairment, 31% minor neurocognitive disorder, and 7% HIV-associated dementia. There was no significant association between VACS Index and any HAND stage. In this first study of the VACS Index in sub-Saharan Africa, we found no association between VACS Index score and HAND.

Keywords

HIV-associated neurocognitive disorder Veterans aging cohort study index Uganda HIV Global health 

Notes

Funding information

This study was supported by the National Institutes of Health (MH099733, MH075673, MH080661-08, L30NS088658, NS065729-05S2, P30AI094189-01A1) and the Johns Hopkins Center for Global Health.

Compliance with ethical standards

Written informed consent was obtained from all study participants. This study was approved by the Western Institutional Review Board, the Uganda Virus Research Institute Research and Ethics Committee, and the Uganda National Council for Science and Technology.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Barakat LA, Juthani-Mehta M, Allore H, Trentalange M, Tate J, Rimland D et al (2015) Comparing clinical outcomes in HIV-infected and uninfected older men hospitalized with community-acquired pneumonia. HIV Medicine.  https://doi.org/10.1111/hiv.12244 CrossRefGoogle Scholar
  2. Cantres-Rosario Y, Plaud-Valentín M, Gerena Y, Skolasky RL, Wojna V, Meléndez LM (2013) Cathepsin B and cystatin B in HIV-seropositive women are associated with infection and HIV-1-associated neurocognitive disorders. AIDS.  https://doi.org/10.1097/QAD.0b013e32835b3e47 CrossRefGoogle Scholar
  3. Ciccarelli N, Fabbiani M, Grima P, Limiti S, Fanti I, Mondi A et al (2014) Liver fibrosis is associated with cognitive impairment in HIV-positive patients. J Int AIDS Soc.  https://doi.org/10.7448/ias.17.4.19722 CrossRefGoogle Scholar
  4. Hammer SM, Squires KE, Hughes MD, Grimes JM, Demeter LM, Currier JS et al (2002) A controlled trial of two nucleoside analogues plus Indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N Engl J Med.  https://doi.org/10.1056/nejm199709113371101 CrossRefGoogle Scholar
  5. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology.  https://doi.org/10.1212/WNL.0b013e318200d727 CrossRefGoogle Scholar
  6. Hogg RS, Heath KV, Yip B, Craib KJP, O’Shaughnessy MV, Schechter MT, Montaner JSG (1998) Improved survival among HIV-infected individuals following initiation of antiretroviral therapy. J Am Med Assoc.  https://doi.org/10.1001/jama.279.6.450 CrossRefGoogle Scholar
  7. Hudson M, Sheron N, Rowe IA, Hirschfield GM (2017) Should we screen for cirrhosis? BMJ (Online).  https://doi.org/10.1136/bmj.j3233
  8. Justice AC, Freiberg MS, Tracy R, Kuller L, Tate JP, Goetz MB et al (2012) Does an index composed of clinical data reflect effects of inflammation, coagulation, and monocyte activation on mortality among those aging with HIV? Clin Infect Dis.  https://doi.org/10.1093/cid/cir989 CrossRefGoogle Scholar
  9. Kallianpur AR, Wang Q, Jia P, Hulgan T, Zhao Z, Letendre SL et al (2016) Anemia and red blood cell indices predict HIV-associated neurocognitive impairment in the highly active antiretroviral therapy era. J Infect Dis.  https://doi.org/10.1093/infdis/jiv754 CrossRefGoogle Scholar
  10. Kwasa J, Cettomai D, Lwanya E, Osiemo D, Oyaro P, Birbeck GL et al (2012) Lessons learned developing a diagnostic tool for HIV-associated dementia feasible to implement in resource-limited settings: pilot testing in Kenya. PLoS One.  https://doi.org/10.1371/journal.pone.0032898 CrossRefGoogle Scholar
  11. Marquine MJ, Umlauf A, Rooney AS, Fazeli PL, Gouaux BD, Woods SP et al (2014) The veterans aging cohort study index is associated with concurrent risk for neurocognitive impairment. J Acquir Immune Defic Syndr.  https://doi.org/10.1097/QAI.0000000000000008 CrossRefGoogle Scholar
  12. Marquine MJ, Sakamoto M, Dufour C, Rooney A, Fazeli P, Umlauf A et al (2016) The impact of ethnicity/race on the association between the Veterans Aging Cohort Study (VACS) Index and neurocognitive function among HIV-infected persons. J NeuroVirology.  https://doi.org/10.1007/s13365-015-0411-6 CrossRefGoogle Scholar
  13. Marquine MJ, Flores I, Kamat R, Johnson N, Umlauf A, Letendre S et al (2018) A composite of multisystem injury and neurocognitive impairment in HIV infection: association with everyday functioning. J NeuroVirology.  https://doi.org/10.1007/s13365-018-0643-3 CrossRefGoogle Scholar
  14. Mullis, C. E., Laeyendecker, O., Reynolds, S. J., Ocama, P., Quinn, J., Boaz, I., … Stabinski, L. (2013). High frequency of false-positive hepatitis C virus enzyme-linked immunosorbent assay in Rakai, Uganda. Clinical Infectious Diseases  https://doi.org/10.1093/cid/cit602 CrossRefGoogle Scholar
  15. Pirillo MF, Bassani L, Germinario EAP, Mancini MG, Vyankandondera J, Okong P et al (2007) Seroprevalence of hepatitis B and C viruses among HIV-infected pregnant women in Uganda and Rwanda. J Med Virol.  https://doi.org/10.1002/jmv.21007 CrossRefGoogle Scholar
  16. Rourke, SB (2015) Asymptomatic neurocognitive impairment (ANI) is associated with progression to symptomatic HIV-associated neurocognitive disorders (HAND) in people with HIV: results from the Ontario HIV treatment network (OHTN) cohort study. Canadian Journal of Infectious Diseases and Medical MicrobiologyGoogle Scholar
  17. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E et al (2016) Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology.  https://doi.org/10.1212/WNL.0000000000002277 CrossRefGoogle Scholar
  18. Sacktor, N., Saylor, D., Nakigozi, G., Nakasujja, N., Robertson, K., Grabowski, M. K., … Wawer, M. J. (2019). Effect of HIV subtype and antiretroviral therapy on HIV-associated neurocognitive disorder stage in Rakai, Uganda. JAIDS Journal of Acquired Immune Deficiency Syndromes  https://doi.org/10.1097/qai.0000000000001992 CrossRefGoogle Scholar
  19. Sakoda ME, Fazeli PL, Ellis RJ, Jeste DV, Grant I, Letendre SL, Moore DJ (2017) Higher cystatin c levels are associated with neurocognitive impairment in older HIV+ adults. J Acquir Immune Defic Syndr.  https://doi.org/10.1097/QAI.0000000000001235 CrossRefGoogle Scholar
  20. Salinas JL, Rentsch C, Marconi VC, Tate J, Budoff M, Butt AA et al (2016) Baseline, time-updated, and cumulative HIV care metrics for predicting acute myocardial infarction and all-cause mortality. Clin Infect Dis.  https://doi.org/10.1093/cid/ciw564 CrossRefGoogle Scholar
  21. Shah, A., Lydecker, A., & Murray, K. (2009). Use of the FIB4 index for non invasive evaluation of fibrosis in non alcoholic fatty liver disease. … and Hepatology: The ….  https://doi.org/10.1016/j.cgh.2009.05.033.USE
  22. Tate JP, Justice AC, Hughes MD, Bonnet F, Reiss P, Mocroft A et al (2013) An internationally generalizable risk index for mortality after one year of antiretroviral therapy. AIDS.  https://doi.org/10.1097/QAD.0b013e32835b8c7f CrossRefGoogle Scholar
  23. Valcour VG, Rubin LH, Obasi MU, Maki PM, Peters MG, Levin S et al (2016) Liver fibrosis linked to cognitive performance in HIV and hepatitis C. J Acquir Immune Defic Syndr.  https://doi.org/10.1097/QAI.0000000000000957 CrossRefGoogle Scholar
  24. Vallet-Pichard, A., Mallet, V., Nalpas, B., Verkarrxye, V., Nalpas, A., Dhalluin-Venier, V., … Pol, S. (2007). FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. Comparison with liver biopsy and FibroTest. Hepatology  https://doi.org/10.1002/hep.21669 CrossRefGoogle Scholar
  25. Yuen T, Brouillette MJ, Fellows LK, Ellis RJ, Letendre S, Heaton R, Mayo N (2017) Personalized risk index for neurocognitive decline among people with well-controlled HIV infection. J Acquir Immune Defic Syndr.  https://doi.org/10.1097/QAI.0000000000001466 CrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2019

Authors and Affiliations

  • Violet Awori
    • 1
  • Gertrude Nakigozi
    • 2
  • Alice Kisakye
    • 2
  • James Batte
    • 2
  • Aggrey Anok
    • 2
  • Richard Mayanja
    • 2
  • Noeline Nakasujja
    • 3
  • Kevin R. Robertson
    • 4
  • Ronald H. Gray
    • 5
  • Maria J. Wawer
    • 5
  • Ned Sacktor
    • 6
  • Deanna Saylor
    • 6
    • 7
    Email author
  1. 1.Aga Khan University HospitalNairobiKenya
  2. 2.Rakai Health Sciences ProgramKalisizoUganda
  3. 3.Department of PsychiatryMakerere UniversityKampalaUganda
  4. 4.Department of NeurologyUniversity of North Carolina—Chapel HillChapel HillUSA
  5. 5.Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  6. 6.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  7. 7.Department of MedicineUniversity of Zambia School of MedicineLusakaZambia

Personalised recommendations