Advertisement

Plasma CXCL10 correlates with HAND in HIV-infected women

  • R. BurlacuEmail author
  • A. Umlauf
  • T. D. Marcotte
  • B. Soontornniyomkij
  • C. C. Diaconu
  • A. Bulacu-Talnariu
  • A. Temereanca
  • S. M. Ruta
  • S. Letendre
  • L. Ene
  • C. L. Achim
Article
  • 26 Downloads

Abstract

HIV-associated neurocognitive disorder (HAND) is characterized by chronic immune activation. We aimed to identify biomarkers associated with HAND and to investigate their association with cognitive function and sex, in a homogenous cohort of HIV-infected (HIV+) young adults, parenterally infected during early childhood. One hundred forty-four HIV+ Romanian participants (51% women) without major confounders underwent standardized neurocognitive and medical evaluation in a cross-sectional study. IFN-γ, IL-1β, IL-6, CCL2, CXCL8, CXCL10, and TNF-α were measured in plasma in all participants and in cerebrospinal fluid (CSF) in a subgroup of 56 study participants. Biomarkers were compared with neurocognitive outcomes, and the influence of sex and HIV disease biomarkers was assessed. In this cohort of young adults (median age of 24 years), the rate of neurocognitive impairment (NCI) was 36.1%. Median current CD4+ count was 479 cells/mm3 and 36.8% had detectable plasma viral load. Women had better HIV-associated overall status. In plasma, controlling for sex, higher levels of IL-6 and TNF-α were associated with NCI (p < 0.05). Plasma CXCL10 showed a significant interaction with sex (p = 0.02); higher values were associated with NCI in women only (p = 0.02). Individuals with undetectable viral load had significantly lower plasma CXCL10 (p < 0.001) and CCL2 (p = 0.02) levels, and CSF CXCL10 (p = 0.01), IL-6 (p = 0.04), and TNF-α (p = 0.04) levels. NCI in young men and women living with HIV was associated with higher IL-6 and TNF-α in plasma, but not in the CSF. CXCL10 was identified as a biomarker of NCI specifically in women with chronic HIV infection.

Keywords

HIV women CXCL-10 Neurocognitive HIV inflammation Young adults 

Notes

Acknowledgements

The authors would like to thank all participants in the study; Terence Hendrix from the HIV Neurobehavioral Research Center in San Diego for neuropsychological training and study coordination, Anca Luca and Adrian Luca, psychologists, for their help with neuropsychological testing, Roxana Radoi, MD, for neuromedical evaluation, and Gratiela Tardei, MD, PhD, for the clinical laboratory assessments.

Authors’ contribution

R.B. contributed to the study design and conception and interpretation of the data and drafted the manuscript. L.E., T.D.M., C.L.A., and S.M.R. contributed to the study design and conception, to the interpretation of the data, and edited the manuscript. A.U. performed the statistical analysis, contributed to drafting, and edited the manuscript. R.B., L.E., and A.B.T. contributed to patient recruitment and testing and assisted with the collection of data. C.C.D. and B.S. helped with biomarker level determination and interpretation of the data. C.C.D. and S.L, A.T. helped with data interpretation and edited the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by 1R01MH094159 and P30MH62512 from National Institute of Mental Health (NIMH).

Compliance with ethical standards

Conflict of interest

R.B., A.U., A.B.T., A.T., S.M.R. and C. C. D. report grants from National Institute of Mental Health (NIMH), during the conduct of the study. L.E. reports grants from National Institute of Mental Health (NIMH), during the conduct of the study; personal fees and non-financial support from Abbvie, personal fees from Johnson & Johnson, personal fees from Merck Sharp & Dohme and personal fees from Bristol-Myers Squibb, outside the submitted work. C. L. A., T.D.M., B.S. and S. L. have nothing to disclose.

References

  1. Abubakar A, Van Baar A, Van de Vijver FJR, Holding P, Newton CRJC (2008) Paediatric HIV and neurodevelopment in sub-Saharan Africa: a systematic review. Tropical Med Int Health 13:880–887.  https://doi.org/10.1111/j.1365-3156.2008.02079.x CrossRefGoogle Scholar
  2. Ansari AW, Bhatnagar N, Dittrich-Breiholz O, Kracht M, Schmidt RE, Heiken H (2006) Host chemokine (C-C motif) ligand-2 (CCL2) is differentially regulated in HIV type 1 (HIV-1)-infected individuals. Int Immunol 18:1443–1451.  https://doi.org/10.1093/intimm/dxl078 CrossRefGoogle Scholar
  3. Apetrei C, Necula A, Holm-Hansen C, Loussert-Ajaka I, Pandrea I, Cozmei C, Streinu-Cercel A, Pascu FR, Negut E, Molnar G, Duca M, Pecec M, Brun-Vézinet F, Simon F (1998) HIV-1 diversity in Romania. AIDS Lond Engl 12:1079–1085CrossRefGoogle Scholar
  4. Bacon MC, von Wyl V, Alden C, Sharp G, Robison E, Hessol N, Gange S, Barranday Y, Holman S, Weber K, Young MA (2005) The Women’s Interagency HIV Study: an observational cohort brings clinical sciences to the bench. Clin Diagn Lab Immunol 12:1013–1019.  https://doi.org/10.1128/CDLI.12.9.1013-1019.2005 Google Scholar
  5. Blanchette N, Smith ML, Fernandes-Penney A, King S, Read S (2001) Cognitive and motor development in children with vertically transmitted HIV infection. Brain Cogn 46:50–53CrossRefGoogle Scholar
  6. Burdo TH, Weiffenbach A, Woods SP, Letendre S, Ellis RJ, Williams KC (2013) Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS Lond Engl 27:1387–1395.  https://doi.org/10.1097/QAD.0b013e32836010bd CrossRefGoogle Scholar
  7. Burlacu R, Umlauf A, Luca A, Gianella S, Radoi R, Ruta SM, Marcotte TD, Ene L, Achim CL (2018) Sex-based differences in neurocognitive functioning in HIV-infected young adults. AIDS Lond Engl 32:217–225.  https://doi.org/10.1097/QAD.0000000000001687 Google Scholar
  8. Canestri A, Lescure F-X, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, Peytavin G, Tubiana R, Pialoux G, Katlama C (2010) Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis 50:773–778.  https://doi.org/10.1086/650538 CrossRefGoogle Scholar
  9. Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, Heaton RK, HNRC Group (2004a) Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol 26:307–319.  https://doi.org/10.1080/13803390490510031 CrossRefGoogle Scholar
  10. Carey CL, Woods SP, Rippeth JD, Gonzalez R, Moore DJ, Marcotte TD, Grant I, Heaton RK, HNRC Group (2004b) Initial validation of a screening battery for the detection of HIV-associated cognitive impairment. Clin Neuropsychol 18:234–248.  https://doi.org/10.1080/13854040490501448 CrossRefGoogle Scholar
  11. Chang L, Ernst T, St Hillaire C, Conant K (2004) Antiretroviral treatment alters relationship between MCP-1 and neurometabolites in HIV patients. Antivir Ther 9:431–440Google Scholar
  12. Cinque P, Vago L, Mengozzi M, Torri V, Ceresa D, Vicenzi E, Transidico P, Vagani A, Sozzani S, Mantovani A, Lazzarin A, Poli G (1998) Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication. AIDS Lond Engl 12:1327–1332CrossRefGoogle Scholar
  13. Ene L, Franklin DR, Burlacu R, Luca AE, Blaglosov AG, Ellis RJ, Alexander TJ, Umlauf A, Grant I, Duiculescu DC, Achim CL, Marcotte TD (2014) Neurocognitive functioning in a Romanian cohort of young adults with parenterally-acquired HIV-infection during childhood. J Neuro-Oncol 20:496–504.  https://doi.org/10.1007/s13365-014-0275-1 Google Scholar
  14. Faílde-Garrido JM, Alvarez MR, Simón-López MA (2008) Neuropsychological impairment and gender differences in HIV-1 infection. Psychiatry Clin Neurosci 62:494–502.  https://doi.org/10.1111/j.1440-1819.2008.01841.x CrossRefGoogle Scholar
  15. González-Scarano F, Martín-García J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81.  https://doi.org/10.1038/nri1527 CrossRefGoogle Scholar
  16. Gott C, Gates T, Dermody N, Brew BJ, Cysique LA (2017) Cognitive change trajectories in virally suppressed HIV-infected individuals indicate high prevalence of disease activity. PLoS One 12:e0171887.  https://doi.org/10.1371/journal.pone.0171887 CrossRefGoogle Scholar
  17. Hagen S, Altfeld M (2016) The X awakens: multifactorial ramifications of sex-specific differences in HIV-1 infection. J Virus Erad 2:78–81Google Scholar
  18. Heaton RK, Marcotte TD, Mindt MR, Sadek J, Moore DJ, Bentley H, McCutchan JA, Reicks C, Grant I, HNRC Group (2004) The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc 10:317–331.  https://doi.org/10.1017/S1355617704102130 CrossRefGoogle Scholar
  19. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, CHARTER Group (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–2096.  https://doi.org/10.1212/WNL.0b013e318200d727 CrossRefGoogle Scholar
  20. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP, Collier AC, Marra CM, Morgello S, Mindt MR, Taylor MJ, Marcotte TD, Atkinson JH, Wolfson T, Gelman BB, McArthur JC, Simpson DM, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, CHARTER Group, HNRC Group (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neuro-Oncol 17:3–16.  https://doi.org/10.1007/s13365-010-0006-1 Google Scholar
  21. Hersh BS, Popovici F, Jezek Z, Satten GA, Apetrei RC, Beldescu N, George JR, Shapiro CN, Gayle HD, Heymann DL (1993) Risk factors for HIV infection among abandoned Romanian children. AIDS Lond Engl 7:1617–1624CrossRefGoogle Scholar
  22. Hestad KA, Menon JA, Silalukey-Ngoma M, Franklin DR, Imasiku ML, Kalima K, Heaton RK (2012) Sex differences in neuropsychological performance as an effect of human immunodeficiency virus infection: a pilot study in Zambia, Africa. J Nerv Ment Dis 200:336–342.  https://doi.org/10.1097/NMD.0b013e31824cc225 CrossRefGoogle Scholar
  23. Holguin A, Banda M, Willen EJ, Malama C, Chiyenu KO, Mudenda VC, Wood C (2011) HIV-1 effects on neuropsychological performance in a resource-limited country, Zambia. AIDS Behav 15:1895–1901.  https://doi.org/10.1007/s10461-011-9988-9 CrossRefGoogle Scholar
  24. Juompan LY, Hutchinson K, Montefiori DC, Nidtha S, Villinger F, Novembre FJ (2008) Analysis of the immune responses in chimpanzees infected with HIV type 1 isolates. AIDS Res Hum Retrovir 24:573–586.  https://doi.org/10.1089/aid.2007.0182 CrossRefGoogle Scholar
  25. Kabuba N, Menon JA, Franklin DR, Heaton RK, Hestad KA (2016) HIV- and AIDS-associated neurocognitive functioning in Zambia - a perspective based on differences between the genders. Neuropsychiatr Dis Treat 12:2021–2028.  https://doi.org/10.2147/NDT.S105481 CrossRefGoogle Scholar
  26. Keating SM, Golub ET, Nowicki M, Young M, Anastos K, Crystal H, Cohen MH, Zhang J, Greenblatt RM, Desai S, Wu S, Landay AL, Gange SJ, Norris PJ, Women’s Interagency HIV Study (2011) The effect of HIV infection and HAART on inflammatory biomarkers in a population-based cohort of women. AIDS Lond Engl 25:1823–1832.  https://doi.org/10.1097/QAD.0b013e3283489d1f CrossRefGoogle Scholar
  27. Krebs SJ, Slike BM, Sithinamsuwan P, Allen IE, Chalermchai T, Tipsuk S, Phanuphak N, Jagodzinski L, Kim JH, Ananworanich J, Marovich MA, Valcour VG, SEARCH 011 study team (2016) Sex differences in soluble markers vary before and after the initiation of antiretroviral therapy in chronically HIV-infected individuals. AIDS Lond Engl 30:1533–1542.  https://doi.org/10.1097/QAD.0000000000001096 CrossRefGoogle Scholar
  28. Lake JE, Vo QT, Jacobson LP, Sacktor N, Miller EN, Post WS, Becker JT, Palella FJ, Ragin A, Martin E, Munro CA, Brown TT (2015) Adiponectin and interleukin-6, but not adipose tissue, are associated with worse neurocognitive function in HIV-infected men. Antivir Ther 20:235–244.  https://doi.org/10.3851/IMP2952 CrossRefGoogle Scholar
  29. Luster AD, Ravetch JV (1987) Genomic characterization of a gamma-interferon-inducible gene (IP-10) and identification of an interferon-inducible hypersensitive site. Mol Cell Biol 7:3723–3731.  https://doi.org/10.1128/mcb.7.10.3723 CrossRefGoogle Scholar
  30. Manly JJ, Smith C, Crystal HA, Richardson J, Golub ET, Greenblatt R, Robison E, Martin EM, Young M (2011) Relationship of ethnicity, age, education, and reading level to speed and executive function among HIV+ and HIV- women: the Women’s Interagency HIV Study (WIHS) Neurocognitive Substudy. J Clin Exp Neuropsychol 33:853–863.  https://doi.org/10.1080/13803395.2010.547662 CrossRefGoogle Scholar
  31. Morlat P, Parneix P, Douard D, Lacoste D, Dupon M, Chêne G, Pellegrin JL, Ragnaud JM, Dabis F (1992) Women and HIV infection: a cohort study of 483 HIV-infected women in Bordeaux, France, 1985-1991. The Groupe d’Epidémiologie Clinique du SIDA en Aquitaine. AIDS Lond Engl 6:1187–1193CrossRefGoogle Scholar
  32. Nolting T, Lindecke A, Koutsilieri E, Maschke M, Husstedt I-W, Sopper S, Stüve O, Hartung H-P, Arendt G, Competence Network HIV/AIDS (2009) Measurement of soluble inflammatory mediators in cerebrospinal fluid of human immunodeficiency virus-positive patients at distinct stages of infection by solid-phase protein array. J Neuro-Oncol 15:390–400.  https://doi.org/10.3109/13550280903350192 Google Scholar
  33. Owen RE, Heitman JW, Hirschkorn DF, Lanteri MC, Biswas HH, Martin JN, Krone MR, Deeks SG, Norris PJ (2010) HIV+ elite controllers have low HIV-specific T cell activation yet maintain strong, polyfunctional T cell responses. AIDS Lond Engl 24:1095–1105.  https://doi.org/10.1097/QAD.0b013e3283377a1e CrossRefGoogle Scholar
  34. Patrascu IV, Dumitrescu O (1993) The epidemic of human immunodeficiency virus infection in Romanian children. AIDS Res Hum Retrovir 9:99–104.  https://doi.org/10.1089/aid.1993.9.99 CrossRefGoogle Scholar
  35. Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A, Gisslén M, Angoff N, Price RW, Cinque P, Spudich S (2012) Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS Lond Engl 26:1765–1774.  https://doi.org/10.1097/QAD.0b013e328355e6b2 CrossRefGoogle Scholar
  36. Richardson JL, Martin EM, Jimenez N, Danley K, Cohen M, Carson VL, Sinclair B, Racenstein JM, Reed RA, Levine AM (2002) Neuropsychological functioning in a cohort of HIV infected women: importance of antiretroviral therapy. J Int Neuropsychol Soc 8:781–793CrossRefGoogle Scholar
  37. Robertson K, Fiscus S, Wilkins J, van der Horst C, Hall C (1996) Viral load and neuropsychological functioning in HIV seropositive individuals:a preliminary descriptive study. J Neuro-AIDS 1:7–15CrossRefGoogle Scholar
  38. Robertson KR, Kapoor C, Robertson WT, Fiscus S, Ford S, Hall CD (2004) No gender differences in the progression of nervous system disease in HIV infection. J Acquir Immune Defic Syndr 1999(36):817–822CrossRefGoogle Scholar
  39. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS Lond Engl 21:1915–1921.  https://doi.org/10.1097/QAD.0b013e32828e4e27 CrossRefGoogle Scholar
  40. Royal W, Cherner M, Burdo TH, Umlauf A, Letendre SL, Jumare J, Abimiku A, Alabi P, Alkali N, Bwala S, Okwuasaba K, Eyzaguirre LM, Akolo C, Guo M, Williams KC, Blattner WA (2016) Associations between cognition, gender and monocyte activation among HIV infected individuals in Nigeria. PLoS One 11:e0147182.  https://doi.org/10.1371/journal.pone.0147182 CrossRefGoogle Scholar
  41. Sanders VJ, Pittman CA, White MG, Wang G, Wiley CA, Achim CL (1998) Chemokines and receptors in HIV encephalitis. AIDS Lond Engl 12:1021–1026CrossRefGoogle Scholar
  42. Schrier RD, Hong S, Crescini M, Ellis R, Pérez-Santiago J, Spina C, Letendre S, HNRP Group (2015) Cerebrospinal fluid (CSF) CD8+ T-cells that express interferon-gamma contribute to HIV associated neurocognitive disorders (HAND). PLoS One 10:e0116526.  https://doi.org/10.1371/journal.pone.0116526 CrossRefGoogle Scholar
  43. Sevigny JJ, Albert SM, McDermott MP, McArthur JC, Sacktor N, Conant K, Schifitto G, Selnes OA, Stern Y, McClernon DR, Palumbo D, Kieburtz K, Riggs G, Cohen B, Epstein LG, Marder K (2004) Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology 63:2084–2090CrossRefGoogle Scholar
  44. Simmons RP, Scully EP, Groden EE, Arnold KB, Chang JJ, Lane K, Lifson J, Rosenberg E, Lauffenburger DA, Altfeld M (2013) HIV-1 infection induces strong production of IP-10 through TLR7/9-dependent pathways. AIDS Lond Engl 27:2505–2517.  https://doi.org/10.1097/01.aids.0000432455.06476.bc CrossRefGoogle Scholar
  45. Stern RA, Arruda JE, Somerville JA, Cohen RA, Boland RJ, Stein MD, Martin EM (1998) Neurobehavioral functioning in asymptomatic HIV-1 infected women. J Int Neuropsychol Soc 4:172–178CrossRefGoogle Scholar
  46. van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, Rourke SB, Holden J, McArthur JC, Gill MJ, Power C (2004) Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology 329:302–318.  https://doi.org/10.1016/j.virol.2004.08.024 CrossRefGoogle Scholar
  47. Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB (1986) Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 83:7089–7093CrossRefGoogle Scholar
  48. Williams R, Dhillon NK, Hegde ST, Yao H, Peng F, Callen S, Chebloune Y, Davis RL, Buch SJ (2009) Pro-inflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes. Glia 57:734–743.  https://doi.org/10.1002/glia.20801 CrossRefGoogle Scholar
  49. Yang B, Akhter S, Chaudhuri A, Kanmogne GD (2009) HIV-1 gp120 induces cytokine expression, leukocyte adhesion, and transmigration across the blood-brain barrier: modulatory effects of STAT1 signaling. Microvasc Res 77:212–219.  https://doi.org/10.1016/j.mvr.2008.11.003 CrossRefGoogle Scholar
  50. Yuan L, Qiao L, Wei F, Yin J, Liu L, Ji Y, Smith D, Li N, Chen D (2013) Cytokines in CSF correlate with HIV-associated neurocognitive disorders in the post-HAART era in China. J Neuro-Oncol 19:144–149.  https://doi.org/10.1007/s13365-013-0150-5 Google Scholar
  51. Yuan L, Liu A, Qiao L, Sheng B, Xu M, Li W, Chen D (2015) The relationship of CSF and plasma cytokine levels in HIV infected patients with neurocognitive impairment. Biomed Res Int 2015:506872.  https://doi.org/10.1155/2015/506872 Google Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2019

Authors and Affiliations

  • R. Burlacu
    • 1
    Email author
  • A. Umlauf
    • 2
  • T. D. Marcotte
    • 2
  • B. Soontornniyomkij
    • 2
  • C. C. Diaconu
    • 3
  • A. Bulacu-Talnariu
    • 1
  • A. Temereanca
    • 4
    • 5
  • S. M. Ruta
    • 4
    • 5
  • S. Letendre
    • 2
  • L. Ene
    • 1
  • C. L. Achim
    • 2
  1. 1.HIV Department‘Dr. Victor Babes’ Hospital for Infectious and Tropical DiseasesBucharestRomania
  2. 2.HIV Neurobehavioral Research ProgramUniversity of California at San DiegoSan DiegoUSA
  3. 3.Cellular and Molecular Pathology DepartmentStefan S. Nicolau Institute of VirologyBucharestRomania
  4. 4.Department of VirologyCarol Davila University of Medicine and PharmacyBucharestRomania
  5. 5.Emerging Viral Diseases DepartmentStefan S. Nicolau Institute of VirologyBucharestRomania

Personalised recommendations