Progressive brain atrophy in chronically infected and treated HIV+ individuals

  • Talia M. Nir
  • Neda Jahanshad
  • Christopher R. K. Ching
  • Ronald A. Cohen
  • Jaroslaw Harezlak
  • Giovanni Schifitto
  • Hei Y. Lam
  • Xue Hua
  • Jianhui Zhong
  • Tong Zhu
  • Michael J. Taylor
  • Thomas B. Campbell
  • Eric S. Daar
  • Elyse J. Singer
  • Jeffry R. Alger
  • Paul M. ThompsonEmail author
  • Bradford A. Navia
  • On behalf of the HIV Neuroimaging Consortium


Growing evidence points to persistent neurological injury in chronic HIV infection. It remains unclear whether chronically HIV-infected individuals on combined antiretroviral therapy (cART) develop progressive brain injury and impaired neurocognitive function despite successful viral suppression and immunological restoration. In a longitudinal neuroimaging study for the HIV Neuroimaging Consortium (HIVNC), we used tensor-based morphometry to map the annual rate of change of regional brain volumes (mean time interval 1.0 ± 0.5 yrs), in 155 chronically infected and treated HIV+ participants (mean age 48.0 ± 8.9 years; 83.9% male) . We tested for associations between rates of brain tissue loss and clinical measures of infection severity (nadir or baseline CD4+ cell count and baseline HIV plasma RNA concentration), HIV duration, cART CNS penetration-effectiveness scores, age, as well as change in AIDS Dementia Complex stage. We found significant brain tissue loss across HIV+ participants, including those neuro-asymptomatic with undetectable viral loads, largely localized to subcortical regions. Measures of disease severity, age, and neurocognitive decline were associated with greater atrophy. Chronically HIV-infected and treated individuals may undergo progressive brain tissue loss despite stable and effective cART, which may contribute to neurocognitive decline. Understanding neurological complications of chronic infection and identifying factors associated with atrophy may help inform strategies to maintain brain health in people living with HIV.


HIV ADC MRI Brain volume cART TBM 



The study was funded by NIH NINDS R01 NS080655 and U54 EB020403. Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database ( For up-to-date information on the study, visit . PPMI—a public-private partnership—is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including AbbVie, Allergan, Avid Radiopharmaceuticals, Biogen, BioLegend, Bristol-Myers Squibb, Denali, GE Healthcare, Genentech, GlaxoSmithKline (GSK), Eli Lilly and Company, Lundbeck, Merck, Meso Scale Discovery (MSD), Pfizer, Piramal Imaging, Roche, Sanofi Genzyme, Servier, Takeda, Teva, and UCB (

Compliance with ethical standards

Conflict of interest

Jeffry R Alger owns NeuroSpectroScopics LLC. Thomas B Campbell is a consultant for Gilead Sciences and Theratechnologies Inc. Xue Hua now works for M3 Biotechnology; the work included in the manuscript was conducted during her appointment at USC, and she reports no disclosures. The remaining authors declare that they have no conflict of interest.

Supplementary material

13365_2019_723_MOESM1_ESM.pdf (229 kb)
ESM 1 (PDF 229 kb)


  1. Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol 27(1):86–92Google Scholar
  2. Ances BM, Ortega M, Vaida F, Heaps J, Paul R (2012) Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr 59(5):469–477Google Scholar
  3. Anderson AM, Harezlak J, Bharti A, Mi D, Taylor MJ, Daar ES, Schifitto G, Zhong J, Alger JR, Brown MS, Singer EJ, Campbell TB, McMahon DD, Buchthal S, Cohen R, Yiannoutsos C, Letendre SL, Navia BA, Consortium HIVN (2015) Plasma and cerebrospinal fluid biomarkers predict cerebral injury in HIV-infected individuals on stable combination antiretroviral therapy. J Acquir Immune Defic Syndr 69(1):29–35Google Scholar
  4. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799Google Scholar
  5. Becker JT, Sanders J, Madsen SK, Ragin A, Kingsley L, Maruca V, Cohen B, Goodkin K, Martin E, Miller EN, Sacktor N, Alger JR, Barker PB, Saharan P, Carmichael OT, Thompson PM, Multicenter ACS (2011) Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imaging Behav 5(2):77–85Google Scholar
  6. Becker JT, Maruca V, Kingsley LA, Sanders JM, Alger JR, Barker PB, Goodkin K, Martin E, Miller EN, Ragin A, Sacktor N, Selnes O, Multicenter ACS (2012) Factors affecting brain structure in men with HIV disease in the post-HAART era. Neuroradiology 54(2):113–121Google Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300Google Scholar
  8. Berger JR, Nath A (1997) HIV dementia and the basal ganglia. Intervirology 40(2–3):122–131Google Scholar
  9. Brew BJ, Cysique L (2017) Does HIV prematurely age the brain? Lancet HIV 4(9):e380–e381Google Scholar
  10. Brew BJ, Rosenblum M, Cronin K, Price RW (1995) AIDS dementia complex and HIV-1 brain infection: clinical-virological correlations. Ann Neurol 38(4):563–570Google Scholar
  11. Brew BJ, Crowe SM, Landay A, Cysique LA, Guillemin G (2009) Neurodegeneration and ageing in the HAART era. J NeuroImmune Pharmacol 4(2):163–174Google Scholar
  12. Cardenas VA, Meyerhoff DJ, Studholme C, Kornak J, Rothlind J, Lampiris H, Neuhaus J, Grant RM, Chao LL, Truran D, Weiner MW (2009) Evidence for ongoing brain injury in human immunodeficiency virus-positive patients treated with antiretroviral therapy. J Neurovirol 15(4):324–333Google Scholar
  13. Castelo JM, Courtney MG, Melrose RJ, Stern CE (2007) Putamen hypertrophy in nondemented patients with human immunodeficiency virus infection and cognitive compromise. Arch Neurol 64(9):1275–1280Google Scholar
  14. Chang L, Shukla DK (2018) Imaging studies of the HIV-infected brain. Handb Clin Neurol 152:229–264Google Scholar
  15. Chang L, Lee PL, Yiannoutsos CT, Ernst T, Marra CM, Richards T, Kolson D, Schifitto G, Jarvik JG, Miller EN, Lenkinski R, Gonzalez G, Navia BA, Consortium HM (2004) A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 23(4):1336–1347Google Scholar
  16. Clifford KM, Samboju V, Cobigo Y, Milanini B, Marx GA, Hellmuth JM, Rosen HJ, Kramer JH, Allen IE, Valcour VG (2017) Progressive brain atrophy despite persistent viral suppression in HIV patients older than 60 years. J Acquir Immune Defic Syndr 76(3):289–297Google Scholar
  17. Cohen RA, Harezlak J, Schifitto G, Hana G, Clark U, Gongvatana A, Paul R, Taylor M, Thompson P, Alger J, Brown M, Zhong J, Campbell T, Singer E, Daar E, McMahon D, Tso Y, Yiannoutsos CT, Navia B (2010) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16(1):25–32Google Scholar
  18. Cohen RA, Seider TR, Navia B (2015) HIV effects on age-associated neurocognitive dysfunction: premature cognitive aging or neurodegenerative disease? Alzheimers Res Ther 7(1):37Google Scholar
  19. Correa DG, Zimmermann N, Tukamoto G, Doring T, Ventura N, Leite SC, Cabral RF, Fonseca RP, Bahia PR, Gasparetto EL (2016) Longitudinal assessment of subcortical gray matter volume, cortical thickness, and white matter integrity in HIV-positive patients. J Magn Reson Imaging 44(5):1262–1269Google Scholar
  20. Cysique LA, Moffat K, Moore DM, Lane TA, Davies NWS, Carr A, Brew BJ, Rae C (2013) HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: a (1) H MRS study. PLoS One 8(4):e61738Google Scholar
  21. Deeks SG, Tracy R, Douek DC (2013) Systemic effects of inflammation on health during chronic HIV infection. Immunity 39(4):633–645Google Scholar
  22. Ding Y, Lin H, Shen W, Wu Q, Gao M, He N (2017) Interaction effects between HIV and aging on selective neurocognitive impairment. J NeuroImmune Pharmacol 12(4):661–669Google Scholar
  23. Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, Collier AC, Gelman B, McArthur J, Morgello S, McCutchan JA, Grant I, Group C (2011) CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS 25(14):1747–1751Google Scholar
  24. Everall I, Barnes H, Spargo E, Lantos P (1995) Assessment of neuronal density in the putamen in human immunodeficiency virus (HIV) infection. Application of stereology and spatial analysis of quadrats. J Neurovirol 1(1):126–129Google Scholar
  25. Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S, Moore D, Ellis R, Cherner M, Gelman B, Morgello S, Singer E, Grant I, Masliah E, National Neuro ATC (2009) Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neurovirol 15(5–6):360–370Google Scholar
  26. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22Google Scholar
  27. Gelman BB, Lisinicchia JG, Morgello S, Masliah E, Commins D, Achim CL, Fox HS, Kolson DL, Grant I, Singer E, Yiannoutsos CT, Sherman S, Gensler G, Moore DJ, Chen T, Soukup VM (2013) Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. J Acquir Immune Defic Syndr 62(5):487–495Google Scholar
  28. Gongvatana A, Harezlak J, Buchthal S, Daar E, Schifitto G, Campbell T, Taylor M, Singer E, Algers J, Zhong J, Brown M, McMahon D, So YT, Mi D, Heaton R, Robertson K, Yiannoutsos C, Cohen RA, Navia B, Consortium HIVN (2013) Progressive cerebral injury in the setting of chronic HIV infection and antiretroviral therapy. J Neurovirol 19(3):209–218Google Scholar
  29. Grant I, Franklin DR Jr, Deutsch R, Woods SP, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Collier AC, Marra CM, Clifford DB, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Smith DM, Heaton RK, Group C (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82(23):2055–2062Google Scholar
  30. Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar E, Alger J, Singer E, Campbell T, Yiannoutsos C, Cohen R, Navia B, Consortium HIVN (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25(5):625–633Google Scholar
  31. Harezlak J, Cohen R, Gongvatana A, Taylor M, Buchthal S, Schifitto G, Zhong J, Daar ES, Alger JR, Brown M, Singer EJ, Campbell TB, McMahon D, So YT, Yiannoutsos CT, Navia BA, Consortium HIVN (2014) Predictors of CNS injury as measured by proton magnetic resonance spectroscopy in the setting of chronic HIV infection and CART. J Neurovirol 20(3):294–303Google Scholar
  32. Heaps JM, Sithinamsuwan P, Paul R, Lerdlum S, Pothisri M, Clifford D, Tipsuk S, Catella S, Busovaca E, Fletcher JL, Raudabaugh B, Ratto-Kim S, Valcour V, Ananworanich J, groups Ss (2015) Association between brain volumes and HAND in cART-naive HIV+ individuals from Thailand. J Neurovirol 21(2):105–112Google Scholar
  33. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP, Collier AC, Marra CM, Morgello S, Mindt MR, Taylor MJ, Marcotte TD, Atkinson JH, Wolfson T, Gelman BB, McArthur JC, Simpson DM, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, Group C, Group H (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17(1):3–16Google Scholar
  34. Heaton RK, Franklin DR Jr, Deutsch R, Letendre S, Ellis RJ, Casaletto K, Marquine MJ, Woods SP, Vaida F, Atkinson JH, Marcotte TD, McCutchan JA, Collier AC, Marra CM, Clifford DB, Gelman BB, Sacktor N, Morgello S, Simpson DM, Abramson I, Gamst AC, Fennema-Notestine C, Smith DM, Grant I, Group C (2015) Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clin Infect Dis 60(3):473–480Google Scholar
  35. Heinen R, Bouvy WH, Mendrik AM, Viergever MA, Biessels GJ, de Bresser J (2016) Robustness of automated methods for brain volume measurements across different MRI field strengths. PLoS One 11(10):e0165719Google Scholar
  36. Hinkin CH, van Gorp WG, Mandelkern MA, Gee M, Satz P, Holston S, Marcotte TD, Evans G, Paz DH, Ropchan JR et al (1995) Cerebral metabolic change in patients with AIDS: report of a six-month follow-up using positron-emission tomography. J Neuropsychiatry Clin Neurosci 7(2):180–187Google Scholar
  37. Holt JL, Kraft-Terry SD, Chang L (2012) Neuroimaging studies of the aging HIV-1-infected brain. J Neurovirol 18(4):291–302Google Scholar
  38. Hua X, Leow AD, Levitt JG, Caplan R, Thompson PM, Toga AW (2009) Detecting brain growth patterns in normal children using tensor-based morphometry. Hum Brain Mapp 30(1):209–219Google Scholar
  39. Hua X, Boyle CP, Harezlak J, Tate DF, Yiannoutsos CT, Cohen R, Schifitto G, Gongvatana A, Zhong J, Zhu T, Taylor MJ, Campbell TB, Daar ES, Alger JR, Singer E, Buchthal S, Toga AW, Navia B, Thompson PM, Consortium HIVN (2013a) Disrupted cerebral metabolite levels and lower nadir CD4 + counts are linked to brain volume deficits in 210 HIV-infected patients on stable treatment. Neuroimage Clin 3:132–142Google Scholar
  40. Hua X, Hibar DP, Ching CRK, Boyle CP, Rajagopalan P, Gutman BA, Leow AD, Toga AW, Jack CR Jr, Harvey D, Weiner MW, Thompson PM (2013b) Unbiased tensor-based morphometry: improved robustness and sample size estimates for Alzheimer’s disease clinical trials. NeuroImage 66:648–661Google Scholar
  41. Hua X, Thompson PM, Leow AD, Madsen SK, Caplan R, Alger JR, O’Neill J, Joshi K, Smalley SL, Toga AW, Levitt JG (2013c) Brain growth rate abnormalities visualized in adolescents with autism. Hum Brain Mapp 34(2):425–436Google Scholar
  42. Hua X, Ching CR, Mezher A, Gutman BA, Hibar DP, Bhatt P, Leow AD, Jack CR Jr, Bernstein MA, Weiner MW, Thompson PM, Alzheimer’s Disease Neuroimaging I (2016) MRI-based brain atrophy rates in ADNI phase 2: acceleration and enrichment considerations for clinical trials. Neurobiol Aging 37:26–37Google Scholar
  43. Jernigan TL, Archibald SL, Fennema-Notestine C, Taylor MJ, Theilmann RJ, Julaton MD, Notestine RJ, Wolfson T, Letendre SL, Ellis RJ, Heaton RK, Gamst AC, Franklin DR Jr, Clifford DB, Collier AC, Gelman BB, Marra C, McArthur JC, McCutchan JA, Morgello S, Simpson DM, Grant I, Group C (2011) Clinical factors related to brain structure in HIV: the CHARTER study. J Neurovirol 17(3):248–257Google Scholar
  44. Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B, Pacheco J, Albert M, Killiany R, Blacker D, Maguire P, Rosas D, Makris N, Gollub R, Dale A, Dickerson BC, Fischl B (2009) MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 46(1):177–192Google Scholar
  45. Kuhn T, Schonfeld D, Sayegh P, Arentoft A, Jones JD, Hinkin CH, Bookheimer SY, Thames AD (2017) The effects of HIV and aging on subcortical shape alterations: a 3D morphometric study. Hum Brain Mapp 38(2):1025–1037Google Scholar
  46. Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB, Salemi M, Garcia DL, Bracci P, Yong W, Commins D, Said J, Khanlou N, Hinkin CH, Sueiras MV, Mathisen G, Donovan S, Shiramizu B, Stoddart CA, McGrath MS, Singer EJ (2016) HIV DNA is frequently present within pathologic tissues evaluated at autopsy from combined antiretroviral therapy-treated patients with undetectable viral loads. J Virol 90(20):8968–8983Google Scholar
  47. Langers DR, Jansen JF, Backes WH (2007) Enhanced signal detection in neuroimaging by means of regional control of the global false discovery rate. Neuroimage 38(1):43–56Google Scholar
  48. Leow AD, Yanovsky I, Chiang MC, Lee AD, Klunder AD, Lu A, Becker JT, Davis SW, Toga AW, Thompson PM (2007) Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration. IEEE Trans Med Imaging 26(6):822–832Google Scholar
  49. Letendre S, Ellis RJ, Best B, Bhatt A, Marquie-Beck J, LeBlanc S, Rossi S, Capparelli E, McCutchan A (2009) Penetration and effectiveness of antiretroviral therapy in the central nervous system. Antiinflamm Antiallergy Agents Med Chem 8(2):169–183Google Scholar
  50. Lysandropoulos AP, Absil J, Metens T, Mavroudakis N, Guisset F, Van Vlierberghe E, Smeets D, David P, Maertens A, Van Hecke W (2016) Quantifying brain volumes for multiple sclerosis patients follow-up in clinical practice—comparison of 1.5 and 3 tesla magnetic resonance imaging. Brain Behav 6(2):e00422Google Scholar
  51. Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, Coffey C, Kieburtz K, Flagg E, Chowdhury S, Poewe W, Mollenhauer B, Klinik P-E, Sherer T, Frasier M, Meunier C, Rudolph A, Casaceli C, Seibyl J, Mendick S, Schuff N, Zhang Y, Toga A, Crawford K, Ansbach A, De Blasio P, Piovella M, Trojanowski J, Shaw L, Singleton A, Hawkins K, Eberling J, Brooks D, Russell D, Leary L, Factor S, Sommerfeld B, Hogarth P, Pighetti E, Williams K, Standaert D, Guthrie S, Hauser R, Delgado H, Jankovic J, Hunter C, Stern M, Tran B, Leverenz J, Baca M, Frank S, Thomas C-A, Richard I, Deeley C, Rees L, Sprenger F, Lang E, Shill H, Obradov S, Fernandez H, Winters A, Berg D, Gauss K, Galasko D, Fontaine D, Mari Z, Gerstenhaber M, Brooks D, Malloy S, Barone P, Longo K, Comery T, Ravina B, Grachev I, Gallagher K, Collins M, Widnell KL, Ostrowizki S, Fontoura P, Ho T, Luthman J, Brug MVD, Reith AD, Taylor P (2011) The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol 95(4):629–635Google Scholar
  52. McArthur RA (2012). Translational neuroimaging: tools for CNS drug discovery, development and treatment, Elsevier ScienceGoogle Scholar
  53. Morgello S (2018). Chapter 2 - HIV neuropathology. Handbook of clinical neurology. B. J. Brew, Elsevier 152: 3–19Google Scholar
  54. Nakagawa F, May M, Phillips A (2013) Life expectancy living with HIV: recent estimates and future implications. Curr Opin Infect Dis 26(1):17–25Google Scholar
  55. Navia BA, Cho ES, Petito CK, Price RW (1986a) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19(6):525–535Google Scholar
  56. Navia BA, Jordan BD, Price RW (1986b) The AIDS dementia complex: I. Clinical features. Ann Neurol 19(6):517–524Google Scholar
  57. Navia B, Harezlak J, Schifitto G, Taylor MJ, Heaton RK, Robertson K, Daar ES, Campbell T, Singer E and Buchthal S (In Review). Predictors of HIV-associated cognitive decline in the era of combined antiretroviral therapy.Google Scholar
  58. Neuen-Jacob E, Arendt G, Wendtland B, Jacob B, Schneeweis M, Wechsler W (1993) Frequency and topographical distribution of CD68-positive macrophages and HIV-1 core proteins in HIV-associated brain lesions. Clin Neuropathol 12(6):315–324Google Scholar
  59. Nir TM, Jahanshad N, Busovaca E, Wendelken L, Nicolas K, Thompson PM, Valcour VG (2014) Mapping white matter integrity in elderly people with HIV. Hum Brain Mapp 35(3):975–992Google Scholar
  60. Pfefferbaum A, Rogosa DA, Rosenbloom MJ, Chu W, Sassoon SA, Kemper CA, Deresinski S, Rohlfing T, Zahr NM, Sullivan EV (2014) Accelerated aging of selective brain structures in human immunodeficiency virus infection: a controlled, longitudinal magnetic resonance imaging study. Neurobiol Aging 35(7):1755–1768Google Scholar
  61. Price RW, Brew BJ (1988) The AIDS dementia complex. J Infect Dis 158(5):1079–1083Google Scholar
  62. Reiman EM, Jagust WJ (2012) Brain imaging in the study of Alzheimer’s disease. NeuroImage 61(2):505–516Google Scholar
  63. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21(14):1915–1921Google Scholar
  64. Rottenberg DA, Moeller JR, Strother SC, Sidtis JJ, Navia BA, Dhawan V, Ginos JZ, Price RW (1987) The metabolic pathology of the AIDS dementia complex. Ann Neurol 22(6):700–706Google Scholar
  65. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E, Ragin A, Levine A, Miller E (2016) Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology 86(4):334–340Google Scholar
  66. Sanford R, Fellows LK, Ances BM, Collins DL (2018) Association of brain structure changes and cognitive function with combination antiretroviral therapy in HIV-positive individuals. JAMA Neurol 75(1):72–79Google Scholar
  67. Tate DF, Sampat M, Harezlak J, Fiecas M, Hogan J, Dewey J, McCaffrey D, Branson D, Russell T, Conley J, Taylor M, Schifitto G, Zhong J, Daar ES, Alger J, Brown M, Singer E, Campbell T, McMahon D, Tso Y, Matesan J, Letendre S, Paulose S, Gaugh M, Tripoli C, Yiannoutsos C, Bigler ED, Cohen RA, Guttmann CR, Navia B, Consortium HIVN (2011) Regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies. J Neurovirol 17(4):368–379Google Scholar
  68. Tucker KA, Robertson KR, Lin W, Smith JK, An H, Chen Y, Aylward SR, Hall CD (2004) Neuroimaging in human immunodeficiency virus infection. J Neuroimmunol 157(1–2):153–162Google Scholar
  69. Veitch DP, Weiner MW, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jr., Jagust W, Morris JC, Petersen RC, Saykin AJ, Shaw LM, Toga AW, Trojanowski JQ and Alzheimer’s Disease Neuroimaging I (2018). Understanding disease progression and improving Alzheimer’s disease clinical trials: recent highlights from the Alzheimer’s Disease Neuroimaging initiative. Alzheimers DementGoogle Scholar
  70. von Giesen HJ, Antke C, Hefter H, Wenserski F, Seitz RJ, Arendt G (2000) Potential time course of human immunodeficiency virus type 1-associated minor motor deficits: electrophysiologic and positron emission tomography findings. Arch Neurol 57(11):1601–1607Google Scholar
  71. World Health Organization (2015) Guideline on when to start ART and on PrEP for HIV. From

Copyright information

© Journal of NeuroVirology, Inc. 2019

Authors and Affiliations

  • Talia M. Nir
    • 1
  • Neda Jahanshad
    • 1
  • Christopher R. K. Ching
    • 1
    • 2
  • Ronald A. Cohen
    • 3
  • Jaroslaw Harezlak
    • 4
  • Giovanni Schifitto
    • 5
  • Hei Y. Lam
    • 1
  • Xue Hua
    • 1
  • Jianhui Zhong
    • 6
  • Tong Zhu
    • 7
  • Michael J. Taylor
    • 8
  • Thomas B. Campbell
    • 9
  • Eric S. Daar
    • 10
  • Elyse J. Singer
    • 11
  • Jeffry R. Alger
    • 11
  • Paul M. Thompson
    • 1
    Email author
  • Bradford A. Navia
    • 12
  • On behalf of the HIV Neuroimaging Consortium
  1. 1.Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Graduate Interdepartmental Program in NeuroscienceUCLA School of MedicineLos AngelesUSA
  3. 3.Department of Aging and Geriatric ResearchUniversity of FloridaGainesvilleUSA
  4. 4.Indiana University School of Public HealthBloomingtonUSA
  5. 5.Department of NeurologyUniversity of RochesterRochesterUSA
  6. 6.Department of Imaging SciencesUniversity of RochesterRochesterUSA
  7. 7.Department Radiation OncologyUniversity of North CarolinaChapel HillUSA
  8. 8.Department of PsychiatryUniversity of CaliforniaSan DiegoUSA
  9. 9.Medicine/Infectious DiseasesUniversity of Colorado DenverAuroraUSA
  10. 10.Los Angeles Biomedical Research Institute, Harbor-UCLA Medical CenterUniversity of CaliforniaLos AngelesUSA
  11. 11.Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesUSA
  12. 12.Department of Public Health, Infection UnitTufts University School of MedicineBostonUSA

Personalised recommendations