Cerebral patterns of neuropsychological disturbances in hepatitis C patients

  • Tino Prell
  • Meike Dirks
  • Dimitrios Arvanitis
  • David Braun
  • Thomas Peschel
  • Hans Worthmann
  • Ramona Schuppner
  • Peter Raab
  • Julian Grosskreutz
  • Karin Weissenborn


Neuropsychiatric symptoms and cognitive impairment have been consistently reported in patients with hepatitis C virus (HCV) infection. Since the mechanisms behind remain to be established, the present study attempted to assess whether neuropsychological impairments in HCV-infected patients are accompanied by structural alterations in the brain. Therefore, 19 anti-HCV-antibody-positive women with mild liver disease and 16 healthy controls underwent extensive neuropsychological testing and cranial magnetic resonance imaging (MRI) examination. Nine of the patients and five controls were followed up after 6–7 years. Voxel-based morphometry and magnetization transfer imaging were utilized to study HCV-associated structural gray and white matter changes. The HCV-infected patients had significantly worse fatigue and depression scores and significantly poorer performance on attention and memory tests than controls. The patients displayed gray matter (GM) atrophy in the bilateral insula and thalamus and a profound GM volume increases in the cerebellum. Microstructural GM changes in the insula were also evident by a reduced magnetization transfer ratio. Structural white matter changes were observed along several descending and crossing fiber tracts. Follow-up at 7 years revealed increased GM atrophy in the left amygdala and left parahippocampal regions over time. We conclude that our data provide evidence for structural alterations in the brains of patients with chronic HCV infection. Disturbances of cerebellothalamocortical regions and circuits, linking cerebellar projections to the prefrontal cortex through the thalamus, underpin the emotional and cognitive dysfunction characteristically observed in these patients.


Hepatitis C virus Infection Fatigue Cognitive impairment MRI Voxel-based morphometry 



We thank Nayana Gaur for proof reading.

Compliance with ethical standards

The study was approved by the local ethics committee and all participants gave written informed consent. The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13365_2018_709_MOESM1_ESM.docx (21 kb)
Supplemental Table 1 (DOCX 21 kb)
13365_2018_709_MOESM2_ESM.docx (21 kb)
Supplemental Table 2 (DOCX 20 kb)


  1. Anstey KJ, Maller JJ (2003) The role of volumetric MRI in understanding mild cognitive impairment and similar classifications. Aging Ment Health 7:238–250CrossRefGoogle Scholar
  2. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571CrossRefGoogle Scholar
  3. Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757CrossRefGoogle Scholar
  4. Bladowska J, Zimny A, Knysz B, Małyszczak K, Kołtowska A, Szewczyk P, Gąsiorowski J, Furdal M, Sąsiadek MJ (2013a) Evaluation of early cerebral metabolic, perfusion and microstructural changes in HCV-positive patients: a pilot study. J Hepatol 59(4):651–657. CrossRefPubMedGoogle Scholar
  5. Bladowska J, Zimny A, Kołtowska A, Szewczyk P, Knysz B, Gąsiorowski J, Furdal M, Sąsiadek MJ (2013b) Evaluation of metabolic changes within the normal appearing gray and white matters in neurologically asymptomatic HIV-1-positive and HCV-positive patients: magnetic resonance spectroscopy and immunologic correlation. Eur J Radiol 82:686–692. CrossRefPubMedGoogle Scholar
  6. Bokemeyer M, Ding XQ, Goldbecker A, Raab P, Heeren M, Arvanitis D, Tillmann HL, Lanfermann H, Weissenborn K (2011) Evidence for neuroinflammation and neuroprotection in HCV infection-associated encephalopathy. Gut 60:370–377. CrossRefPubMedGoogle Scholar
  7. Brickenkamp R (1981) Test d2. Aufmerksamkeits-Belastungs-Test. Hogrefe, GöttingenGoogle Scholar
  8. Chan SW, Harmer CJ, Norbury R, O'Sullivan U, Goodwin GM, Portella MJ (2016) Hippocampal volume in vulnerability and resilience to depression. J Affect Disord 189:199–202. CrossRefPubMedGoogle Scholar
  9. Chiu WC, Tsan YT, Tsai SL, Chang CJ, Wang JD, Chen PC, Health Data Analysis in Taiwan (hDATa) Research Group (2014) Hepatitis C viral infection and the risk of dementia. Eur J Neurol 21:1068–1059. CrossRefPubMedGoogle Scholar
  10. Christensen AL (1979) Luria’s neuropsychological investigation text, 2nd edn. Munksgaard, CopenhagenGoogle Scholar
  11. Craig AD (2009) How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70. CrossRefGoogle Scholar
  12. De Smet HJ, Paquier P, Verhoeven J, Mariën P (2013) The cerebellum: its role in language and related cognitive and affective functions. Brain Lang 127:334–342. CrossRefPubMedGoogle Scholar
  13. Dirks M, Pflugrad H, Haag K, Tillmann HL, Wedemeyer H, Arvanitis D, Hecker H, Tountopoulou A, Goldbecker A, Worthmann H, Weissenborn K (2017) Persistent neuropsychiatric impairment in HCV patients despite clearance of the virus?! J Viral Hepat 24:541–550. CrossRefPubMedGoogle Scholar
  14. Durmusoglu E, Ugurlu O, Akan S, Simsek F, Kizilates G, Kitis O, Ozkul BA, Eker C, Coburn KL, Gonul AS (2018) Hippocampal shape alterations in healthy young women with familial risk for unipolar depression. Compr Psychiatry 82:7–13. CrossRefPubMedGoogle Scholar
  15. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335CrossRefGoogle Scholar
  16. Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006a) The human parietal operculum. I Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16:254–267CrossRefGoogle Scholar
  17. Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006b) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279CrossRefGoogle Scholar
  18. Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30:6409–6421. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fisk JD, Ritvo PG, Ross L, Haase DA, Marrie TJ, Schlech WF (1994) Measuring the functional impact of fatigue: initial validation of the fatigue impact scale. Clin Infect Dis 18:S79–S83CrossRefGoogle Scholar
  20. Fletcher NF, Wilson GK, Murray J, Hu K, Lewis A, Reynolds GM, Stamataki Z, Meredith LW, Rowe IA, Luo G, Lopez-Ramirez MA, Baumert TF, Weksler B, Couraud PO, Kim KS, Romero IA, Jopling C, Morgello S, Balfe P, McKeating JA (2012) Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology 142:634–643. CrossRefPubMedGoogle Scholar
  21. Forton DM, Thomas HC, Murphy CA, Allsop JM, Foster GR, Main J, Wesnes KA, Taylor-Robinson SD (2002) Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease. Hepatology 35:433–439CrossRefGoogle Scholar
  22. Forton DM, Karayiannis P, Mahmud N, Taylor-Robinson SD, Thomas HC (2004) Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants. J Virol 78:5170–5183CrossRefGoogle Scholar
  23. Glahn A, Prell T, Grosskreutz J, Peschel T, Müller-Vahl KR (2015) Obsessive-compulsive disorder is a heterogeneous disorder: evidence from diffusion tensor imaging and magnetization transfer imaging. BMC Psychiatry 25(15):135. CrossRefGoogle Scholar
  24. Goh J, Coughlan B, Quinn J, O'Keane JC, Crowe J (1999) Fatigue does not correlate with the degree of hepatitis or the presence of autoimmune disorders in chronic hepatitis C infection. Eur J Gastroenterol Hepatol 11:833–838CrossRefGoogle Scholar
  25. Grover VP, Pavese N, Koh SB, Wylezinska M, Saxby BK, Gerhard A, Forton DM, Brooks DJ, Thomas HC, Taylor-Robinson SD (2012) Cerebral microglial activation in patients with hepatitis C: in vivo evidence of neuroinflammation. J Viral Hepat 19:e89–e96. CrossRefPubMedGoogle Scholar
  26. Heeren M, Weissenborn K, Arvanitis D, Bokemeyer M, Goldbecker A, Tountopoulou A, Peschel T, Grosskreutz J, Hecker H, Buchert R, Berding G (2011) Cerebral glucose utilisation in hepatitis C virus infection-associated encephalopathy. J Cereb Blood Flow Metab 31:2199–2208. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PC, Mori S (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39:336–347CrossRefGoogle Scholar
  28. Kharabian Masouleh S, Herzig S, Klose L, Roggenhofer E, Tenckhoff H, Kaiser T, Thöne-Otto A, Wiese M, Berg T, Schroeter ML, Margulies DS, Villringer A (2017) Functional connectivity alterations in patients with chronic hepatitis C virus infection: a multimodal MRI study. J Viral Hepat 24:216–225. CrossRefPubMedGoogle Scholar
  29. Kurth F, Eickhoff SB, Schleicher A, Hoemke L, Zilles K, Amunts K (2010) Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cereb Cortex 20:1448–1461. CrossRefPubMedGoogle Scholar
  30. Laskus T, Radkowski M, Bednarska A, Wilkinson J, Adair D, Nowicki M, Nikolopoulou GB, Vargas H, Rakela J (2002) Detection and analysis of hepatitis C virus sequences in cerebrospinal fluid. J Virol 76:10064–10068CrossRefGoogle Scholar
  31. McAndrews MP, Farcnik K, Carlen P, Damyanovich A, Mrkonjic M, Jones S, Heathcote EJ (2005) Prevalence and significance of neurocognitive dysfunction in hepatitis C in the absence of correlated risk factors. Hepatology 41:801–808CrossRefGoogle Scholar
  32. Pergola G, Suchan B (2013) Associative learning beyond the medial temporal lobe: many actors on the memory stage. Front Behav Neurosci 7:162. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pflugrad H, Meyer GJ, Dirks M, Raab P, Tryc AB, Goldbecker A, Worthmann H, Wilke F, Boellaard R, Yaqub M, Berding G, Weissenborn K (2016) Cerebral microglia activation in hepatitis C virus infection correlates to cognitive dysfunction. J Viral Hepat 23:348–357. CrossRefPubMedGoogle Scholar
  34. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83–98. CrossRefPubMedGoogle Scholar
  35. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Thames AD, Castellon SA, Singer EJ, Nagarajan R, Sarma MK, Smith J, Thaler NS, Truong JH, Schonfeld D, Thomas MA, Hinkin CH (2015) Neuroimaging abnormalities, neurocognitive function, and fatigue in patients with hepatitis C. Neurol Neuroimmunol Neuroinflamm 2:e59. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, Lok AS (2003) A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 38:518–526CrossRefGoogle Scholar
  38. Weissenborn K, Rückert N, Brassel F, Becker H, Dietz H (1996) A proposed modification of the Wada test for presurgical assessment in temporal lobe epilepsy. Neuroradiology 38:422–429CrossRefGoogle Scholar
  39. Weissenborn K, Krause J, Bokemeyer M, Hecker H, Schüler A, Ennen JC, Ahl B, Manns MP, Böker KW (2004) Hepatitis C virus infection affects the brain-evidence from psychometric studies and magnetic resonance spectroscopy. J Hepatol 41:845–851CrossRefGoogle Scholar
  40. Weissenborn K, Ennen JC, Bokemeyer M, Ahl B, Wurster U, Tillmann H, Trebst C, Hecker H, Berding G (2006) Monoaminergic neurotransmission is altered in hepatitis C virus infected patients with chronic fatigue and cognitive impairment. Gut 55:1624–1630CrossRefGoogle Scholar
  41. Wilkinson J, Radkowski M, Laskus T (2009) Hepatitis C virus neuroinvasion: identification of infected cells. J Virol 83:1312–1319. CrossRefPubMedGoogle Scholar
  42. Zeuzem S (2017) Treatment options in hepatitis C. Dtsch Arztebl Int 114:11–21. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhou H, Li R, Ma Z, Rossi S, Zhu X, Li J (2016) Smaller gray matter volume of hippocampus/ parahippocampus in elderly people with subthreshold depression: a cross-sectional study. BMC Psychiatry 16:219. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370CrossRefGoogle Scholar
  45. Zimmermann P, Fimm B (eds) (1992) Testbatterie zur Aufmerksamkeitsprüfung. Psytest, HerzogenrathGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2019

Authors and Affiliations

  • Tino Prell
    • 1
  • Meike Dirks
    • 2
  • Dimitrios Arvanitis
    • 2
  • David Braun
    • 2
  • Thomas Peschel
    • 2
  • Hans Worthmann
    • 2
  • Ramona Schuppner
    • 2
  • Peter Raab
    • 3
  • Julian Grosskreutz
    • 1
  • Karin Weissenborn
    • 2
  1. 1.Hans-Berger Department of NeurologyJena University HospitalJenaGermany
  2. 2.Department of NeurologyHannover Medical SchoolHannoverGermany
  3. 3.Institute of Interventional and Diagnostic NeuroradiologyHannover Medical SchoolHannoverGermany

Personalised recommendations