Advertisement

Mechanisms of neuropathogenesis in HIV and HCV: similarities, differences, and unknowns

  • Ameer Abutaleb
  • Sarah Kattakuzhy
  • Shyam Kottilil
  • Erin O’Connor
  • Eleanor Wilson
Review

Abstract

HIV and hepatitis C virus (HCV) have both been associated with cognitive impairment. Combination antiretroviral therapy (cART) has dramatically changed the nature of cognitive impairment in HIV-infected persons, while the role of direct-acting antivirals (DAA) in neurocognition of HCV-infected individuals remains unclear. Also, whether HIV and HCV interact to promote neurocognitive decline or whether they each contribute an individual effect continues to be an open question. In this work, we review the virally mediated mechanisms of HIV- and HCV-mediated neuropathogenesis, with an emphasis on the role of dual infection, and discuss observed changes with HIV viral suppression and HCV functional cure on neurocognitive impairments.

Keywords

HIV HCV Neuropathology Neuroradiology Neuropathogenesis HAND 

Notes

Compliance with ethical standards

Conflict of interest

Drs. Wilson and Kottilil have received research grants to their institution from Gilead Sciences, Inc.

References

  1. Adamson DC, McArthur JC, Dawson TM, Dawson VL (1999) Rate and severity of HIV-associated dementia (HAD): correlations with Gp41 and iNOS. Mol Med 5(2):98–109CrossRefPubMedGoogle Scholar
  2. Alatrakchi N, Koziel MJ (2003) A tale of two viruses: hepatitis C in the age of HAART. Lancet 362(9397):1687–1688CrossRefGoogle Scholar
  3. Albright AV, Strizki J, Harouse JM, Lavi E, O'Connor M, Gonzalez-Scarano F (1996) HIV-1 infection of cultured human adult oligodendrocytes. Virology 217(1):211–219CrossRefGoogle Scholar
  4. An SF, Groves M, Gray F, Scaravilli F (1999) Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J Neuropathol Exp Neurol 58(11):1156–1162CrossRefGoogle Scholar
  5. Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M (2003) HIV-1 tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 74(2):255–265.  https://doi.org/10.1002/jnr.10762 CrossRefGoogle Scholar
  6. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799CrossRefPubMedGoogle Scholar
  7. Antonucci F, Cento V, Sorbo MC, Manuelli MC, Lenci I, Sforza D, di Carlo D, Milana M, Manzia TM, Angelico M, Tisone G, Perno CF, Ceccherini-Silberstein F (2017) HCV-RNA quantification in liver bioptic samples and extrahepatic compartments, using the Abbott RealTime HCV assay. J Virol Methods 246:1–7CrossRefGoogle Scholar
  8. Asensio VC, Maier J, Milner R et al (2001) Interferon-independent, human immunodeficiency virus type 1 gp120-mediated induction of CXCL10/IP-10 gene expression by astrocytes in vivo and in vitro. J Virol 75(15):7067–7077.  https://doi.org/10.1128/JVI.75.15.7067-7077.2001 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Barbosa MED, Zaninotto AL, de Campos Mazo DF et al (2017) Hepatitis C virus eradication improves immediate and delayed episodic memory in patients treated with interferon and ribavirin. BMC Gastroenterol 17(1):122–017–10679-5.  https://doi.org/10.1186/s12876-017-0679-5 CrossRefGoogle Scholar
  10. Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S, Mandrand B, Mallet F, Cosset FL (2000) An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74(7):3321–3329CrossRefPubMedGoogle Scholar
  11. Bolay H, Soylemezoglu F, Nurlu G, Tuncer S, Varli K (1996) PCR detected hepatitis C virus genome in the brain of a case with progressive encephalomyelitis with rigidity. Clin Neurol Neurosurg 98(4):305–308CrossRefGoogle Scholar
  12. Carta MG, Angst J, Moro MF et al (2012) Association of chronic hepatitis C with recurrent brief depression. J Affect Disord 141(2–3):361–366.  https://doi.org/10.1016/j.jad.2012.03.020 CrossRefGoogle Scholar
  13. Chang HC, Samaniego F, Nair BC, Buonaguro L, Ensoli B (1997) HIV-1 tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 11(12):1421–1431CrossRefGoogle Scholar
  14. Chen SL, Morgan TR (2006) The natural history of hepatitis C virus (HCV) infection. Int J Med Sci 3(2):47–52CrossRefPubMedGoogle Scholar
  15. Cherner M, Letendre S, Heaton RK et al (2005) Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology 64(8):1343–1347CrossRefGoogle Scholar
  16. Churchill M, Nath A (2013) Where does HIV hide? A focus on the central nervous system. Curr Opin HIV AIDS 8(3):165–169.  https://doi.org/10.1097/COH.0b013e32835fc601 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Churchill MJ, Wesselingh SL, Cowley D et al (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66(2):253–258.  https://doi.org/10.1002/ana.21697 CrossRefGoogle Scholar
  18. Clifford DB (2017) HIV-associated neurocognitive disorder. Curr Opin Infect Dis 30(1):117–122.  https://doi.org/10.1097/QCO.0000000000000328 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13(11):976–986.  https://doi.org/10.1016/S1473-3099(13)70269-X CrossRefPubMedCentralPubMedGoogle Scholar
  20. Clifford DB, Evans SR, Yang Y, Gulick RM (2005) The neuropsychological and neurological impact of hepatitis C virus co-infection in HIV-infected subjects. AIDS 19(Suppl 3):S64–S71CrossRefGoogle Scholar
  21. Clifford DB, Vaida F, Kao YT et al (2015) Absence of neurocognitive effect of hepatitis C infection in HIV-coinfected people. Neurology 84(3):241–250.  https://doi.org/10.1212/WNL.0000000000001156 CrossRefPubMedCentralPubMedGoogle Scholar
  22. Codazzi F, Menegon A, Zacchetti D, Ciardo A, Grohovaz F, Meldolesi J (1995) HIV-1 gp120 glycoprotein induces [Ca2+]i responses not only in type-2 but also type-1 astrocytes and oligodendrocytes of the rat cerebellum. Eur J Neurosci 7(6):1333–1341CrossRefGoogle Scholar
  23. Cooper V, Clatworthy J, Harding R, Whetham J (2017) Emerge Consortium. Measuring quality of life among people living with HIV: a systematic review of reviews. Health Qual Life Outcomes 15(1):220.  https://doi.org/10.1186/s12955-017-0778-6 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Cosenza MA, Zhao ML, Si Q, Lee SC (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 12(4):442–455CrossRefGoogle Scholar
  25. Costiniuk CT, Jenabian MA (2015) HIV reservoir dynamics in the face of highly active antiretroviral therapy. AIDS Patient Care STDS 29(2):55–68.  https://doi.org/10.1089/apc.2014.0173 CrossRefGoogle Scholar
  26. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42(9):1736–1739CrossRefGoogle Scholar
  27. de Almeida SM, de Pereira AP, Pedroso MLA et al (2018) Neurocognitive impairment with hepatitis C and HIV co-infection in southern brazil. J Neurovirol.  https://doi.org/10.1007/s13365-018-0617-5 CrossRefGoogle Scholar
  28. Epstein LG, Kuiken C, Blumberg BM, Hartman S, Sharer LR, Clement M, Goudsmit J (1991) HIV-1 V3 domain variation in brain and spleen of children with AIDS: tissue-specific evolution within host-determined quasispecies. Virology 180(2):583–590CrossRefGoogle Scholar
  29. Eugenin EA, Berman JW (2007) Gap junctions mediate human immunodeficiency virus-bystander killing in astrocytes. J Neurosci 27(47):12844–12850CrossRefPubMedGoogle Scholar
  30. Eugenin EA, Clements JE, Zink MC, Berman JW (2011) Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J Neurosci 31(26):9456–9465.  https://doi.org/10.1523/JNEUROSCI.1460-11.2011 CrossRefPubMedCentralPubMedGoogle Scholar
  31. Eugenin EA, D'Aversa TG, Lopez L, Calderon TM, Berman JW (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85(5):1299–1311CrossRefGoogle Scholar
  32. Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26(4):1098–1106CrossRefGoogle Scholar
  33. Fauci AS, Marston HD (2015) Ending the HIV-AIDS pandemic--follow the science. N Engl J Med 373(23):2197–2199.  https://doi.org/10.1056/NEJMp1502020 CrossRefGoogle Scholar
  34. Ferenci P, Staufer K (2008) Depression in chronic hepatitis: the virus, the drug, or the ethnic background? Liver Int 28(4):429–431.  https://doi.org/10.1111/j.1478-3231.2008.01703.x CrossRefGoogle Scholar
  35. Fletcher NF, Wilson GK, Murray J et al (2012) Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology 142(3):634–643.e6.  https://doi.org/10.1053/j.gastro.2011.11.028 CrossRefGoogle Scholar
  36. Fontana RJ, Bieliauskas LA, Back-Madruga C, Lindsay KL, Kronfol Z, Lok AS, Padmanabhan L, the HALT-C Trial Group (2005) Cognitive function in hepatitis C patients with advanced fibrosis enrolled in the HALT-C trial. J Hepatol 43(4):614–622CrossRefGoogle Scholar
  37. Foos TM, Wu JY (2002) The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27(1–2):21–26CrossRefGoogle Scholar
  38. Forton DM, Allsop JM, Main J, Foster GR, Thomas HC, Taylor-Robinson SD (2001) Evidence for a cerebral effect of the hepatitis C virus. Lancet 358(9275):38–39CrossRefGoogle Scholar
  39. Forton DM, Karayiannis P, Mahmud N, Taylor-Robinson SD, Thomas HC (2004) Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants. J Virol 78(10):5170–5183CrossRefPubMedGoogle Scholar
  40. Forton DM, Taylor-Robinson SD, Thomas HC (2002) Reduced quality of life in hepatitis C--is it all in the head? J Hepatol 36(3):435–438CrossRefGoogle Scholar
  41. Gisslen M, Price RW, Nilsson S (2011) The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis 11:356.  https://doi.org/10.1186/1471-2334-11-356 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: Correlations with dementia. Ann Neurol 38(5):755–762.  https://doi.org/10.1002/ana.410380510 CrossRefGoogle Scholar
  43. Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5(1):69–81CrossRefGoogle Scholar
  44. Gray F, Belec L, Geny C, Schouman-Claeys E (1993) Diagnosis of diffuse encephalopathies in adults with HIV infection I. Presse Med 22(26):1226–1231Google Scholar
  45. Haase AT (1986) Pathogenesis of lentivirus infections. Nature 322(6075):130–136.  https://doi.org/10.1038/322130a0 CrossRefGoogle Scholar
  46. Harrison TB, Smith B (2011) Neuromuscular manifestations of HIV/AIDS. J Clin Neuromuscul Dis 13(2):68–84.  https://doi.org/10.1097/CND.0b013e318221256f CrossRefGoogle Scholar
  47. Haughey NJ, Holden CP, Nath A, Geiger JD (1999) Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J Neurochem 73(4):1363–1374CrossRefGoogle Scholar
  48. Heaps-Woodruff JM, Wright PW, Ances BM, Clifford D, Paul RH (2016) The impact of human immune deficiency virus and hepatitis C coinfection on white matter microstructural integrity. J Neurovirol 22(3):389–399.  https://doi.org/10.1007/s13365-015-0409-0 CrossRefGoogle Scholar
  49. Heaton RK, Clifford DB, Franklin DR Jr et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75(23):2087–2096.  https://doi.org/10.1212/WNL.0b013e318200d727 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Heaton RK, Franklin DR, Ellis RJ et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17(1):3–16.  https://doi.org/10.1007/s13365-010-0006-1 CrossRefGoogle Scholar
  51. Hesselgesser J, Taub D, Baskar P, Greenberg M, Hoxie J, Kolson DL, Horuk R (1998) Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr Biol 8(10):595–598CrossRefGoogle Scholar
  52. Hinkin CH, Castellon SA, Levine AJ, Barclay TR, Singer EJ (2008) Neurocognition in individuals co-infected with HIV and hepatitis C. J Addict Dis 27(2):11–17.  https://doi.org/10.1300/J069v27n02_02 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Kaul M, Lipton SA (1999) Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96(14):8212–8216CrossRefPubMedGoogle Scholar
  54. Kemmer N, Hua L, Andersen JW et al (2012) Health-related quality of life in subjects with HCV/HIV coinfection: results from ACTG 5178 study. J Viral Hepat 19(11):792–800.  https://doi.org/10.1111/j.1365-2893.2012.01609.x CrossRefPubMedCentralPubMedGoogle Scholar
  55. Kim WK, Corey S, Chesney G et al (2004) Identification of T lymphocytes in simian immunodeficiency virus encephalitis: distribution of CD8+ T cells in association with central nervous system vessels and virus. J Neurovirol 10(5):315–325.  https://doi.org/10.1080/13550280490505382 CrossRefGoogle Scholar
  56. King JE, Eugenin EA, Hazleton JE, Morgello S, Berman JW (2010) Mechanisms of HIV-tat-induced phosphorylation of N-methyl-D-aspartate receptor subunit 2A in human primary neurons: implications for neuroAIDS pathogenesis. Am J Pathol 176(6):2819–2830.  https://doi.org/10.2353/ajpath.2010.090642 CrossRefPubMedCentralPubMedGoogle Scholar
  57. Klein RS, Williams KC, Alvarez-Hernandez X et al (1999) Chemokine receptor expression and signaling in macaque and human fetal neurons and astrocytes: implications for the neuropathogenesis of AIDS. J Immunol 163(3):1636–1646Google Scholar
  58. Kranick SM, Nath A (2012) Neurologic complications of HIV-1 infection and its treatment in the era of antiretroviral therapy. Continuum (Minneap Minn) 18(6 Infectious Disease):1319–1337.  https://doi.org/10.1212/01.CON.0000423849.24900.ec CrossRefGoogle Scholar
  59. Kuhn T, Sayegh P, Jones JD et al (2017) Improvements in brain and behavior following eradication of hepatitis C. J Neurovirol 23(4):593–602.  https://doi.org/10.1007/s13365-017-0533-0 CrossRefPubMedCentralPubMedGoogle Scholar
  60. Lavi E, Kolson DL, Ulrich AM, Fu L, Gonzalez-Scarano F (1998) Chemokine receptors in the human brain and their relationship to HIV infection. J Neuro-Oncol 4(3):301–311Google Scholar
  61. Lima VD, Lourenco L, Yip B, Hogg RS, Phillips P, Montaner JS (2015) AIDS incidence and AIDS-related mortality in british columbia, canada, between 1981 and 2013: a retrospective study. Lancet HIV 2(3):e92–e97.  https://doi.org/10.1016/S2352-3018(15)00017-X CrossRefPubMedCentralPubMedGoogle Scholar
  62. Liu Y, Chen L, Zou Z et al (2016) Hepatitis C virus infection induces elevation of CXCL10 in human brain microvascular endothelial cells. J Med Virol 88(9):1596–1603.  https://doi.org/10.1002/jmv.24504 CrossRefGoogle Scholar
  63. Liu NQ, Lossinsky AS, Popik W, Li X, Gujuluva C, Kriederman B, Roberts J, Pushkarsky T, Bukrinsky M, Witte M, Weinand M, Fiala M (2002) Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol 76(13):6689–6700CrossRefPubMedGoogle Scholar
  64. Liu Z, Zhao F, He JJ (2014) Hepatitis C virus (HCV) interaction with astrocytes: nonproductive infection and induction of IL-18. J Neurovirol 20(3):278–293.  https://doi.org/10.1007/s13365-014-0245-7 CrossRefGoogle Scholar
  65. Low Y, Goforth H, Preud'homme X, Edinger J, Krystal A (2014) Insomnia in HIV-infected patients: pathophysiologic implications. AIDS Rev 16(1):3–13Google Scholar
  66. Lowry D, Coughlan B, McCarthy O, Crowe J (2010) Investigating health-related quality of life, mood and neuropsychological test performance in a homogeneous cohort of irish female hepatitis C patients. J Viral Hepat 17(5):352–359.  https://doi.org/10.1111/j.1365-2893.2009.01188.x CrossRefGoogle Scholar
  67. Marcondes MC, Burudi EM, Huitron-Resendiz S et al (2001) Highly activated CD8(+) T cells in the brain correlate with early central nervous system dysfunction in simian immunodeficiency virus infection. J Immunol 167(9):5429–5438CrossRefGoogle Scholar
  68. McIntosh RC, Rosselli M, Uddin LQ, Antoni M (2015) Neuropathological sequelae of human immunodeficiency virus and apathy: a review of neuropsychological and neuroimaging studies. Neurosci Biobehav Rev 55:147–164.  https://doi.org/10.1016/j.neubiorev.2015.04.008 CrossRefGoogle Scholar
  69. McManus CM, Weidenheim K, Woodman SE et al (2000) Chemokine and chemokine-receptor expression in human glial elements: induction by the HIV protein, tat, and chemokine autoregulation. Am J Pathol 156(4):1441–1453CrossRefPubMedGoogle Scholar
  70. Meltzer MS, Nakamura M, Hansen BD, Turpin JA, Kalter DC, Gendelman HE (1990) Macrophages as susceptible targets for HIV infection, persistent viral reservoirs in tissue, and key immunoregulatory cells that control levels of virus replication and extent of disease. AIDS Res Hum Retrovir 6(8):967–971.  https://doi.org/10.1089/aid.1990.6.967 CrossRefGoogle Scholar
  71. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A 95(24):14500–14505CrossRefPubMedGoogle Scholar
  72. Meucci O, Fatatis A, Simen AA, Miller RJ (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 97(14):8075–8080.  https://doi.org/10.1073/pnas.090017497 CrossRefPubMedCentralPubMedGoogle Scholar
  73. Monaco S, Mariotto S, Ferrari S et al (2015) Hepatitis C virus-associated neurocognitive and neuropsychiatric disorders: advances in 2015. World J Gastroenterol 21(42):11974–11983.  https://doi.org/10.3748/wjg.v21.i42.11974 CrossRefPubMedCentralPubMedGoogle Scholar
  74. Morgello S (2005) The nervous system and hepatitis C virus. Semin Liver Dis 25(1):118–121.  https://doi.org/10.1055/s-2005-864787 CrossRefGoogle Scholar
  75. Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 tat epitope that is neuroexcitatory and neurotoxic. J Virol 70(3):1475–1480PubMedCentralPubMedGoogle Scholar
  76. Neuman MG, Benhamou JP, Marcellin P, Valla D, Malkiewicz IM, Katz GG, Trepo C, Bourliere M, Cameron RG, Cohen L, Morgan M, Schmilovitz-Weiss H, Ben-Ari Z (2007) Cytokine--chemokine and apoptotic signatures in patients with hepatitis C. Transl Res 149(3):126–136CrossRefGoogle Scholar
  77. Ohagen A, Ghosh S, He J, Huang K, Chen Y, Yuan M, Osathanondh R, Gartner S, Shi B, Shaw G, Gabuzda D (1999) Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: evidence for a role of the envelope. J Virol 73(2):897–906PubMedCentralPubMedGoogle Scholar
  78. Operskalski EA, Kovacs A (2011) HIV/HCV co-infection: pathogenesis, clinical complications, treatment, and new therapeutic technologies. Curr HIV/AIDS Rep 8(1):12–22.  https://doi.org/10.1007/s11904-010-0071-3 CrossRefPubMedCentralPubMedGoogle Scholar
  79. Park IW, Wang JF, Groopman JE (2001) HIV-1 tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. Blood 97(2):352–358CrossRefGoogle Scholar
  80. Patel CA, Mukhtar M, Pomerantz RJ (2000) Human immunodeficiency virus type 1 vpr induces apoptosis in human neuronal cells. J Virol 74(20):9717–9726CrossRefPubMedGoogle Scholar
  81. Paulino AD, Ubhi K, Rockenstein E et al (2011) Neurotoxic effects of the HCV core protein are mediated by sustained activation of ERK via TLR2 signaling. J Neurovirol 17(4):327–340.  https://doi.org/10.1007/s13365-011-0039-0 CrossRefPubMedCentralPubMedGoogle Scholar
  82. Peluso R, Haase A, Stowring L, Edwards M, Ventura P (1985) A trojan horse mechanism for the spread of visna virus in monocytes. Virology 147(1):231–236CrossRefGoogle Scholar
  83. Perry W, Carlson MD, Barakat F, Hilsabeck RC, Schiehser DM, Mathews C, Hassanein TI (2005) Neuropsychological test performance in patients co-infected with hepatitis C virus and HIV. AIDS 19(Suppl 3):S79–S84CrossRefGoogle Scholar
  84. Pflugrad H, Meyer GJ, Dirks M et al (2016) Cerebral microglia activation in hepatitis C virus infection correlates to cognitive dysfunction. J Viral Hepat 23(5):348–357.  https://doi.org/10.1111/jvh.12496 CrossRefGoogle Scholar
  85. Poynard T, Cacoub P, Ratziu V, Myers RP, Dezailles MH, Mercadier A, Ghillani P, Charlotte F, Piette JC, Moussalli J, for the multivirc group* (2002) Fatigue in patients with chronic hepatitis C. J Viral Hepat 9(4):295–303CrossRefGoogle Scholar
  86. Qu J, Zhang Q, Li Y et al (2012) The tat protein of human immunodeficiency virus-1 enhances hepatitis C virus replication through interferon gamma-inducible protein-10. BMC Immunol 13:15.  https://doi.org/10.1186/1471-2172-13-15 CrossRefPubMedCentralPubMedGoogle Scholar
  87. Radkowski M, Wilkinson J, Nowicki M, Adair D, Vargas H, Ingui C, Rakela J, Laskus T (2002) Search for hepatitis C virus negative-strand RNA sequences and analysis of viral sequences in the central nervous system: evidence of replication. J Virol 76(2):600–608CrossRefPubMedGoogle Scholar
  88. Reddy RT, Achim CL, Sirko DA et al (1996) Sequence analysis of the V3 loop in brain and spleen of patients with HIV encephalitis. AIDS Res Hum Retrovir 12(6):477–482.  https://doi.org/10.1089/aid.1996.12.477 CrossRefGoogle Scholar
  89. Russell RA, Chojnacki J, Jones DM, Johnson E, Do T, Eggeling C, Padilla-Parra S, Sattentau QJ (2017) Astrocytes resist HIV-1 fusion but engulf infected macrophage material. Cell Rep 18(6):1473–1483CrossRefPubMedGoogle Scholar
  90. Samreen B, Khaliq S, Ashfaq UA et al (2012) Hepatitis C virus entry: role of host and viral factors. Infect Genet Evol 12(8):1699–1709.  https://doi.org/10.1016/j.meegid.2012.07.010 CrossRefGoogle Scholar
  91. Shimizu YK, Igarashi H, Kanematu T, Fujiwara K, Wong DC, Purcell RH, Yoshikura H (1997) Sequence analysis of the hepatitis C virus genome recovered from serum, liver, and peripheral blood mononuclear cells of infected chimpanzees. J Virol 71(8):5769–5773PubMedCentralPubMedGoogle Scholar
  92. Song L, Nath A, Geiger JD, Moore A, Hochman S (2003) Human immunodeficiency virus type 1 tat protein directly activates neuronal N-methyl-D-aspartate receptors at an allosteric zinc-sensitive site. J Neuro-Oncol 9(3):399–403Google Scholar
  93. Strazielle N, Creidy R, Malcus C, Boucraut J, Ghersi-Egea JF (2016) T-lymphocytes traffic into the brain across the blood-CSF barrier: evidence using a reconstituted choroid plexus epithelium. PLoS One 11(3):e0150945.  https://doi.org/10.1371/journal.pone.0150945 CrossRefPubMedCentralPubMedGoogle Scholar
  94. Tan IL, McArthur JC (2012) HIV-associated neurological disorders: a guide to pharmacotherapy. CNS Drugs 26(2):123–134.  https://doi.org/10.2165/11597770-000000000-00000 CrossRefGoogle Scholar
  95. Thiyagarajan A, Garvey LJ, Pflugrad H et al (2010) Cerebral function tests reveal differences in HIV-infected subjects with and without chronic HCV co-infection. Clin Microbiol Infect 16(10):1579–1584.  https://doi.org/10.1111/j.1469-0691.2010.03176.x CrossRefGoogle Scholar
  96. Thompson KA, McArthur JC, Wesselingh SL (2001) Correlation between neurological progression and astrocyte apoptosis in HIV-associated dementia. Ann Neurol 49(6):745–752CrossRefGoogle Scholar
  97. Tully DC, Hjerrild S, Leutscher PD et al (2016) Deep sequencing of hepatitis C virus reveals genetic compartmentalization in cerebrospinal fluid from cognitively impaired patients. Liver Int 36(10):1418–1424.  https://doi.org/10.1111/liv.13134 CrossRefPubMedCentralPubMedGoogle Scholar
  98. Tyor WR, Glass JD, Griffin JW et al (1992) Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol 31(4):349–360.  https://doi.org/10.1002/ana.410310402 CrossRefGoogle Scholar
  99. Vallat AV, De Girolami U, He J et al (1998) Localization of HIV-1 co-receptors CCR5 and CXCR4 in the brain of children with AIDS. Am J Pathol 152(1):167–178PubMedCentralPubMedGoogle Scholar
  100. Vargas HE, Laskus T, Radkowski M, Wilkinson J, Balan V, Douglas DD, Harrison ME, Mulligan DC, Olden K, Adair D, Rakela J (2002) Detection of hepatitis C virus sequences in brain tissue obtained in recurrent hepatitis C after liver transplantation. Liver Transpl 8(11):1014–1019CrossRefGoogle Scholar
  101. Vivithanaporn P, Maingat F, Lin LT et al (2010) Hepatitis C virus core protein induces neuroimmune activation and potentiates human immunodeficiency virus-1 neurotoxicity. PLoS One 5(9):e12856.  https://doi.org/10.1371/journal.pone.0012856 CrossRefPubMedCentralPubMedGoogle Scholar
  102. Vlkolinsky R, Siggins GR, Campbell IL, Krucker T (2004) Acute exposure to CXC chemokine ligand 10, but not its chronic astroglial production, alters synaptic plasticity in mouse hippocampal slices. J Neuroimmunol 150(1–2):37–47.  https://doi.org/10.1016/j.jneuroim.2004.01.011 CrossRefGoogle Scholar
  103. Wahl SM, Allen JB, McCartney-Francis N, Morganti-Kossmann MC, Kossmann T, Ellingsworth L, Mai UE, Mergenhagen SE, Orenstein JM (1991) Macrophage- and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. J Exp Med 173(4):981–991CrossRefGoogle Scholar
  104. Weissenborn K, Tryc AB, Heeren M et al (2009) Hepatitis C virus infection and the brain. Metab Brain Dis 24(1):197–210.  https://doi.org/10.1007/s11011-008-9130-5 CrossRefGoogle Scholar
  105. Wesselingh SL, Power C, Glass JD et al (1993) Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol 33(6):576–582.  https://doi.org/10.1002/ana.410330604 CrossRefGoogle Scholar
  106. Wiley CA, Achim CL, Christopherson C, Kidane Y, Kwok S, Masliah E, Mellors J, Radhakrishnan L, Wang G, Soontornniyomkij V (1999) HIV mediates a productive infection of the brain. AIDS 13(15):2055–2059CrossRefGoogle Scholar
  107. Wilkinson J, Radkowski M, Laskus T (2009) Hepatitis C virus neuroinvasion: identification of infected cells. J Virol 83(3):1312–1319.  https://doi.org/10.1128/JVI.01890-08 CrossRefGoogle Scholar
  108. Williams KC, Hickey WF (2002) Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25:537–562.  https://doi.org/10.1146/annurev.neuro.25.112701.142822 CrossRefGoogle Scholar
  109. Williams R, Yao H, Dhillon NK, Buch SJ (2009) HIV-1 tat co-operates with IFN-gamma and TNF-alpha to increase CXCL10 in human astrocytes. PLoS One 4(5):e5709.  https://doi.org/10.1371/journal.pone.0005709 CrossRefPubMedCentralPubMedGoogle Scholar
  110. Zheng J, Thylin MR, Ghorpade A, Xiong H, Persidsky Y, Cotter R, Niemann D, Che MH, Zeng YC, Gelbard HA, Shepard RB, Swartz JM, Gendelman HE (1999) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98(2):185–200CrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2018

Authors and Affiliations

  • Ameer Abutaleb
    • 1
    • 2
  • Sarah Kattakuzhy
    • 1
  • Shyam Kottilil
    • 1
  • Erin O’Connor
    • 3
  • Eleanor Wilson
    • 1
  1. 1.Division of Clinical Care and Research, Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Division of Gastroenterology & Hepatology, Department of MedicineUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations