Advertisement

Journal of NeuroVirology

, Volume 24, Issue 6, pp 712–719 | Cite as

Plasma HIV RNA level is associated with neurocognitive function among HIV-1-infected patients in Nigeria

  • Jibreel Jumare
  • Samer S. El-Kamary
  • Laurence Magder
  • Laura Hungerford
  • Nicaise Ndembi
  • Ahmad Aliyu
  • Patrick Dakum
  • Anya Umlauf
  • Mariana Cherner
  • Alash’le Abimiku
  • Man Charurat
  • William A. Blattner
  • Walter RoyalIII
Article
  • 56 Downloads

Abstract

Plasma HIV RNA level has been shown to correlate with HIV disease progression, morbidity, and mortality. We examined the association between levels of plasma HIV RNA and cognitive function among patients in Nigeria. A total of 179 HIV-1-infected participants with available plasma HIV RNA results and followed longitudinally for up to 2 years were included in this study. Blood samples from participants were used for the measurement of plasma HIV RNA and CD4+ T cell count. Utilizing demographic and practice effect-adjusted T scores obtained from a seven-domain neuropsychological test battery, cognitive status was determined by the global deficit score (GDS) approach, with a GDS ≥ 0.5 indicating cognitive impairment. In a longitudinal multivariable linear regression analysis, adjusting for CD4 cell count, Beck’s Depression Score, age, gender, years of education, and antiretroviral treatment status, global T scores decreased by 0.35 per log10 increase in plasma HIV RNA [p = 0.033]. Adjusting for the same variables in a multivariable logistic regression, the odds of neurocognitive impairment were 28% higher per log10 increase in plasma HIV RNA (OR 1.28 [95% CI 1.08, 1.51]; p = 0.005). There were statistically significant associations for the speed of information processing, executive, and verbal fluency domains in both linear and logistic regression analyses. We found a significant association between plasma HIV RNA levels and cognitive function in both baseline (cross-sectional) and longitudinal analyses. However, the latter was significantly attenuated due to weak association among antiretroviral-treated individuals.

Keywords

Plasma HIV RNA Cognitive function Nigeria 

Notes

Financial Support

This work was supported by the National Institutes of Health grant no. R01 MH086356 (to William A. Blattner and Walter Royal, III) and by the National Institutes of Health Fogarty/AIDS International Training and Research Program grant no. 2D43TW001041-14 (training support to Jibreel Jumare).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Disclaimer

This work was presented in part at the 19th Annual International Meeting of the Institute of Human Virology, 23rd-26th October 2017, Baltimore, Maryland, USA (Abstract P-D6).

References

  1. Akolo C, Royal W III, Cherner M, Okwuasaba K, Eyzaguirre L, Adebiyi R, Umlauf A, Hendrix T, Johnson J, Abimiku A e, Blattner W (2014) Neurocognitive impairment associated with predominantly early stage HIV infection in Abuja, Nigeria. J Neurovirol 20(4):380–387CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beck AT, Steer RA ,Brown GK (1996) Beck Depression Inventory San Antonio, TX, Psychological CorporationGoogle Scholar
  4. Blackstone K, Moore DJ, Franklin DR, Clifford DB, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, Ellis RJ, Atkinson JH, Grant I, Heaton RK (2012) Defining neurocognitive impairment in HIV: deficit scores versus clinical ratings. Clin Neuropsychol 26(6):894–908CrossRefPubMedGoogle Scholar
  5. Brew BJ, Chan P (2014) Update on HIV dementia and HIV-associated neurocognitive disorders. Curr Neurol Neurosci Rep 14(8):1–7CrossRefGoogle Scholar
  6. Camlin CS, Seeley J, Viljoen L, Vernooij E, Simwinga M, Reynolds L, Reis R, Plank R, Orne-Gliemann J, McGrath N, Larmarange J, Hoddinott G, Getahun M, Charlebois ED, Bond V (2016) Strengthening universal HIV ‘test-and-treat’ approaches with social science research. AIDS (London, England) 30(6):969–970CrossRefGoogle Scholar
  7. Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, Heaton RK (2004) Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol 26(3):307–319CrossRefGoogle Scholar
  8. Childs EA, Lyles RH, Selnes OA, Chen B, Miller EN, Cohen BA, Becker JT, Mellors J, McArthur JC (1999) Plasma viral load and CD4 lymphocytes predict HIV-associated dementia and sensory neuropathy. Neurology 52(3):607–613CrossRefPubMedGoogle Scholar
  9. Connolly MA, Liang K-Y (1988) Conditional logistic regression models for correlated binary data. Biometrika 75(3):501–506CrossRefGoogle Scholar
  10. Cysique LA, Waters EK, Brew BJ (2011) Central nervous system antiretroviral efficacy in HIV infection: a qualitative and quantitative review and implications for future research. BMC Neurol 11(1):1–10CrossRefGoogle Scholar
  11. Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR, Abramson I, Atkinson JH, Grant I, McCutchan JA (1997) Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol 42(5):679–688CrossRefPubMedGoogle Scholar
  12. Ellis RJ, Moore DJ, Childers ME, Letendre S, McCutchan J, Wolfson T, Spector SA, Hsia K, Heaton RK, Grant I (2002) Progression to neuropsychological impairment in human immunodeficiency virus infection predicted by elevated cerebrospinal fluid levels of human immunodeficiency virus rna. Arch Neurol 59(6):923–928CrossRefPubMedGoogle Scholar
  13. Ferrando S, van Gorp W, McElhiney M, Goggin K, Sewell M, Rabkin J (1998) Highly active antiretroviral treatment in HIV infection: benefits for neuropsychological function. AIDS 12(8):F65–F70CrossRefPubMedGoogle Scholar
  14. Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5(1):69–81CrossRefPubMedGoogle Scholar
  15. Group T M E W (2013) Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis 56(7):1004–1017CrossRefGoogle Scholar
  16. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75(23):2087–2096CrossRefPubMedPubMedCentralGoogle Scholar
  17. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP, Collier AC, Marra CM, Morgello S, Mindt MR, Taylor MJ, Marcotte TD, Atkinson JH, Wolfson T, Gelman BB, McArthur JC, Simpson DM, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17(1):3–16CrossRefPubMedGoogle Scholar
  18. Henrard DR, Phillips JF, Muenz LR, Blattner WA, Wiesner D, Eyster ME, Goedert JJ (1995) Natural history of HIV-1 cell-free viremia. Jama 274(7):554–558CrossRefPubMedGoogle Scholar
  19. Huang X, Chen H, Li W, Li H, Jin X, Perelson AS, Fox Z, Zhang T, Xu X, Wu H (2012) Precise determination of time to reach viral load set point after acute HIV-1 infection. J Acquir Immune Defic Syndr 61(4):448–454CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jumare J, Sunshine S, Ahmed H, El-Kamary SS, Magder L, Hungerford L, Burdo T, Eyzaguirre LM, Umlauf A, Cherner M, Abimiku A, Charurat M, Li JZ, Blattner WA, Royal W 3rd (2017) Peripheral blood lymphocyte HIV DNA levels correlate with HIV associated neurocognitive disorders in Nigeria. J Neurovirol 27(10):017–0520Google Scholar
  21. Marcotte TD, Deutsch R, McCutchan J, Moore DJ, Letendre S, Ellis RJ, Wallace MR, Heaton RK, Grant I, San Diego HIV Neurobehavioral Research Center (HNRC) Group (2003) Prediction of incident neurocognitive impairment by plasma HIV RNA and CD4 levels early after HIV seroconversion. Arch Neurol 60(10):1406–1412CrossRefPubMedGoogle Scholar
  22. McArthur JC, McClernon DR, Cronin MF, Nance-Sproson TE, Saah AJ, St Clair M, Lanier ER (1997) Relationship between human immunodeficiency virus—associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42(5):689–698CrossRefGoogle Scholar
  23. Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, Kingsley LA (1996) Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272(5265):1167–1170CrossRefPubMedGoogle Scholar
  24. Nath A, Schiess N, Venkatesan A, Rumbaugh J, Sacktor N, McArthur J (2008) Evolution of HIV dementia with HIV infection. Int Rev Psychiatry 20(1):25–31CrossRefPubMedGoogle Scholar
  25. Price RW, Spudich S (2008) Antiretroviral therapy and central nervous system HIV type 1 infection. J Infect Dis 15(197):533419Google Scholar
  26. Rao VR, Ruiz AP, Prasad VR (2014) Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 11:13CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rausch DM, Davis MR (2001) HIV in the CNS: pathogenic relationships to systemic HIV disease and other CNS diseases. J Neurovirol 7(2):85–96CrossRefPubMedGoogle Scholar
  28. Reger M, Welsh R, Razani J, Martin DJ, Boone KB (2002) A meta-analysis of the neuropsychological sequelae of HIV infection. J Int Neuropsychol Soc 8(3):410–424CrossRefPubMedGoogle Scholar
  29. Reger MA, Martin DJ, Cole SL, Strauss G (2005) The relationship between plasma viral load and neuropsychological functioning in HIV-1 infection. Arch Clin Neuropsychol 20(2):137–143CrossRefPubMedGoogle Scholar
  30. Robertson K, Fiscus S, Kapoor C, Robertson W, Schneider G, Shepard R, Howe L, Silva S, Hall C (1998) CSF, plasma viral load and HIV associated dementia. J Neurovirol 4(1):90–94CrossRefPubMedGoogle Scholar
  31. Royal W 3rd, Cherner M, Burdo TH, Umlauf A, Letendre SL, Jumare J, Abimiku A, Alabi P, Alkali N, Bwala S, Okwuasaba K, Eyzaguirre LM, Akolo C, Guo M, Williams KC, Blattner WA (2016) Associations between cognition, gender and monocyte activation among HIV infected individuals in Nigeria. PLoS One 11(2):e0147182CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sanford R, Fellows LK, Ances BM, Collins D (2018) Association of brain structure changes and cognitive function with combination antiretroviral therapy in HIV-positive individuals. JAMA Neurol 75(1):72–79CrossRefPubMedGoogle Scholar
  33. Spudich S (2013) HIV and neurocognitive dysfunction. Curr HIV/AIDS Rep 10(3):235–243CrossRefPubMedPubMedCentralGoogle Scholar
  34. Spudich S, González-Scarano F (2012) HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harbor Perspect Med 2(6):a007120CrossRefGoogle Scholar
  35. Stankoff B, Calvez V, Suarez S, Bossi P, Rosenblum O, Conquy L, Turell E, Dubard T, Coutellier A, Baril L, Bricaire F, Lacomblez L, Lubetzki C (1999) Plasma and cerebrospinal fluid human immunodeficiency virus type-1 (HIV-1) RNA levels in HIV-related cognitive impairment. Eur J Neurol 6(6):669–675CrossRefPubMedGoogle Scholar
  36. Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19(2):152–168CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zayyad Z, Spudich S (2015) Neuropathogenesis of HIV: from initial neuroinvasion to HIV associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 12(1):16–24CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2018

Authors and Affiliations

  • Jibreel Jumare
    • 1
  • Samer S. El-Kamary
    • 1
  • Laurence Magder
    • 1
  • Laura Hungerford
    • 1
  • Nicaise Ndembi
    • 1
    • 2
  • Ahmad Aliyu
    • 2
  • Patrick Dakum
    • 1
    • 2
  • Anya Umlauf
    • 3
  • Mariana Cherner
    • 3
  • Alash’le Abimiku
    • 1
  • Man Charurat
    • 1
  • William A. Blattner
    • 1
  • Walter RoyalIII
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA
  2. 2.Institute of Human Virology NigeriaAbujaNigeria
  3. 3.University of California San Diego, School of MedicineSan DiegoUSA

Personalised recommendations