Advertisement

Journal of NeuroVirology

, Volume 24, Issue 4, pp 439–453 | Cite as

Ultradeep single-molecule real-time sequencing of HIV envelope reveals complete compartmentalization of highly macrophage-tropic R5 proviral variants in brain and CXCR4-using variants in immune and peripheral tissues

  • Robin L. Brese
  • Maria Paz Gonzalez-Perez
  • Matthew Koch
  • Olivia O’Connell
  • Katherine Luzuriaga
  • Mohan Somasundaran
  • Paul R. Clapham
  • James Jarad Dollar
  • David J Nolan
  • Rebecca RoseEmail author
  • Susanna L. Lamers
Article
  • 236 Downloads

Abstract

Despite combined antiretroviral therapy (cART), HIV+ patients still develop neurological disorders, which may be due to persistent HIV infection and selective evolution in brain tissues. Single-molecule real-time (SMRT) sequencing technology offers an improved opportunity to study the relationship among HIV isolates in the brain and lymphoid tissues because it is capable of generating thousands of long sequence reads in a single run. Here, we used SMRT sequencing to generate ~ 50,000 high-quality full-length HIV envelope sequences (> 2200 bp) from seven autopsy tissues from an HIV+/cART+ subject, including three brain and four non-brain sites. Sanger sequencing was used for comparison with SMRT data and to clone functional pseudoviruses for in vitro tropism assays. Phylogenetic analysis demonstrated that brain-derived HIV was compartmentalized from HIV outside the brain and that the variants from each of the three brain tissues grouped independently. Variants from all peripheral tissues were intermixed on the tree but independent of the brain clades. Due to the large number of sequences, a clustering analysis at three similarity thresholds (99, 99.5, and 99.9%) was also performed. All brain sequences clustered exclusive of any non-brain sequences at all thresholds; however, frontal lobe sequences clustered independently of occipital and parietal lobes. Translated sequences revealed potentially functional differences between brain and non-brain sequences in the location of putative N-linked glycosylation sites (N-sites), V1 length, V3 charge, and the number of V4 N-sites. All brain sequences were predicted to use the CCR5 co-receptor, while most non-brain sequences were predicted to use CXCR4 co-receptor. Tropism results were confirmed by in vitro infection assays. The study is the first to use a SMRT sequencing approach to study HIV compartmentalization in tissues and supports other reports of limited trafficking between brain and non-brain sequences during cART. Due to the long sequence length, we could observe changes along the entire envelope gene, likely caused by differential selective pressure in the brain that may contribute to neurological disease.

Keywords

Evolution Phylogenetics Clustering Tropism Combined antiretroviral therapy (cART) Next-generation sequencing (NGS) 

Notes

Acknowledgements

We thank Benjamin Murrell (University of California, San Diego) for early discussions on this project. We thank Yvonne Edwards for help in managing PacBio sequencing data at UMASS Med.Sch.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

13365_2018_633_MOESM1_ESM.docx (42 kb)
Supplementary Table 1 (DOCX 42 kb)

References

  1. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799CrossRefPubMedPubMedCentralGoogle Scholar
  2. Archer J, Rambaut A, Taillon BE, Harrigan PR, Lewis M, Robertson DL (2010) The evolutionary analysis of emerging low frequency HIV-1 CXCR4 using variants through time--an ultra-deep approach. PLoS Comput Biol 6:e1001022CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beauparlant D, Rusert P, Magnus C, Kadelka C, Weber J, Uhr T, Zagordi O, Oberle C, Duenas-Decamp MJ, Clapham PR, Metzner KJ, Gunthard HF, Trkola A (2017) Delineating CD4 dependency of HIV-1: adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality. PLoS Pathog 13:e1006255CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bell JE, Busuttil A, Ironside JW, Rebus S, Donaldson YK, Simmonds P, Peutherer JF (1993) Human immunodeficiency virus and the brain: investigation of virus load and neuropathologic changes in pre-AIDS subjects. J Infect Dis 168:818–824CrossRefPubMedGoogle Scholar
  5. Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW (2011) Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 267:109–123CrossRefPubMedGoogle Scholar
  6. Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, Alvarez X, Kuroda MJ, Williams KC (2010) Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog 6:e1000842CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burkala EJ, He J, West JT, Wood C, Petito CK (2005) Compartmentalization of HIV-1 in the central nervous system: role of the choroid plexus. AIDS 19:675–684CrossRefPubMedGoogle Scholar
  8. Caragounis EC, Gisslen M, Lindh M, Nordborg C, Westergren S, Hagberg L, Svennerholm B (2008) Comparison of HIV-1 pol and env sequences of blood, CSF, brain and spleen isolates collected ante-mortem and post-mortem. Acta Neurol Scand 117:108–116PubMedGoogle Scholar
  9. Chang J, Jozwiak R, Wang B, Ng T, Ge YC, Bolton W, Dwyer DE, Randle C, Osborn R, Cunningham AL, Saksena NK (1998) Unique HIV type 1 V3 region sequences derived from six different regions of brain: region-specific evolution within host-determined quasispecies. AIDS Res Hum Retrovir 14:25–30CrossRefPubMedGoogle Scholar
  10. Chen H, Wood C, Petito CK (2000) Comparisons of HIV-1 viral sequences in brain, choroid plexus and spleen: potential role of choroid plexus in the pathogenesis of HIV encephalitis. J Neuro-Oncol 6:498–506Google Scholar
  11. Chohan B, Lang D, Sagar M, Korber B, Lavreys L, Richardson B, Overbaugh J (2005) Selection for human immunodeficiency virus type 1 envelope glycosylation variants with shorter V1-V2 loop sequences occurs during transmission of certain genetic subtypes and may impact viral RNA levels. J Virol 79:6528–6531CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clifford DB (2017) HIV-associated neurocognitive disorder. Curr Opin Infect Dis 30:117–122PubMedPubMedCentralGoogle Scholar
  13. Cosenza MA, Zhao ML, Si Q, Lee SC (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 12:442–455CrossRefPubMedGoogle Scholar
  14. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42:1736–1739CrossRefPubMedGoogle Scholar
  15. Derdeyn CA, Hunter E (2008) Viral characteristics of transmitted HIV. Curr Opin HIV AIDS 3:16–21CrossRefPubMedGoogle Scholar
  16. Derdeyn CA, Decker JM, Bibollet-Ruche F, Mokili JL, Muldoon M, Denham SA, Heil ML, Kasolo F, Musonda R, Hahn BH, Shaw GM, Korber BT, Allen S, Hunter E (2004) Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 303:2019–2022CrossRefPubMedGoogle Scholar
  17. Donaldson YK, Bell JE, Ironside JW, Brettle RP, Robertson JR, Busuttil A, Simmonds P (1994) Redistribution of HIV outside the lymphoid system with onset of AIDS. Lancet 343:383–385CrossRefPubMedGoogle Scholar
  18. Duenas-Decamp MJ, Peters P, Burton D, Clapham PR (2008) Natural resistance of human immunodeficiency virus type 1 to the CD4bs antibody b12 conferred by a glycan and an arginine residue close to the CD4 binding loop. J Virol 82:5807–5814CrossRefPubMedPubMedCentralGoogle Scholar
  19. Duenas-Decamp MJ, Peters PJ, Burton D, Clapham PR (2009) Determinants flanking the CD4 binding loop modulate macrophage tropism of human immunodeficiency virus type 1 R5 envelopes. J Virol 83:2575–2583CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dunfee RL, Thomas ER, Gorry PR, Wang J, Taylor J, Kunstman K, Wolinsky SM, Gabuzda D (2006) The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc Natl Acad Sci U S A 103:15160–15165CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dunfee RL, Thomas ER, Wang J, Kunstman K, Wolinsky SM, Gabuzda D (2007) Loss of the N-linked glycosylation site at position 386 in the HIV envelope V4 region enhances macrophage tropism and is associated with dementia. Virology 367:222–234CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dunfee RL, Thomas ER, Gabuzda D (2009) Enhanced macrophage tropism of HIV in brain and lymphoid tissues is associated with sensitivity to the broadly neutralizing CD4 binding site antibody b12. Retrovirology 6:69CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ferrarini M, Moretto M, Ward JA, Šurbanovski N, Stevanović V, Giongo L, Viola R, Cavalieri D, Velasco R, Cestaro A, Sargent DJ (2013) An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genomics 14:670CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L'Heureux D, Regulier EG, Richardson MW, Amini S, Morgello S, Khalili K, Rappaport J (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neuro-Oncol 7:528–541Google Scholar
  25. Fischer-Smith T, Croul S, Adeniyi A, Rybicka K, Morgello S, Khalili K, Rappaport J (2004) Macrophage/microglial accumulation and proliferating cell nuclear antigen expression in the central nervous system in human immunodeficiency virus encephalopathy. Am J Pathol 164:2089–2099CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gartner S (2000) HIV infection and dementia. Science 287:602–604CrossRefPubMedGoogle Scholar
  27. Gatanaga H, Oka S, Ida S, Wakabayashi T, Shioda T, Iwamoto A (1999) Active HIV-1 redistribution and replication in the brain with HIV encephalitis. Arch Virol 144:29–43CrossRefPubMedGoogle Scholar
  28. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38:755–762CrossRefPubMedGoogle Scholar
  29. Gnanakaran S, Bhattacharya T, Daniels M, Keele BF, Hraber PT, Lapedes AS, Shen T, Gaschen B, Krishnamoorthy M, Li H, Decker JM, Salazar-Gonzalez JF, Wang S, Jiang C, Gao F, Swanstrom R, Anderson JA, Ping LH, Cohen MS, Markowitz M, Goepfert PA, Saag MS, Eron JJ, Hicks CB, Blattner WA, Tomaras GD, Asmal M, Letvin NL, Gilbert PB, Decamp AC, Magaret CA, Schief WR, Ban YE, Zhang M, Soderberg KA, Sodroski JG, Haynes BF, Shaw GM, Hahn BH, Korber B (2011) Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections. PLoS Pathog 7:e1002209CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gonzalez-Perez MP, O'Connell O, Lin R, Sullivan WM, Bell J, Simmonds P, Clapham PR (2012) Independent evolution of macrophage-tropism and increased charge between HIV-1 R5 envelopes present in brain and immune tissue. Retrovirology 9:20CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gonzalez-Perez MP, Peters PJ, O’Connell O, Silva N, Harbison C, Cummings Macri S, Kaliyaperumal S, Luzuriaga K, Clapham PR (2017) Identification of emerging mac-tropic HIV-1 R5 variants in brain tissue of patients without severe neurological complications. J Virol 91: In press:e00755–e00717CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81CrossRefPubMedGoogle Scholar
  33. Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D (2001) Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75:10073–10089CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gray ES, Moore PL, Choge IA, Decker JM, Bibollet-Ruche F, Li H, Leseka N, Treurnicht F, Mlisana K, Shaw GM, Karim SS, Williamson C, Morris L (2007) Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection. J Virol 81:6187–6196CrossRefPubMedPubMedCentralGoogle Scholar
  35. Haggerty S, Stevenson M (1991) Predominance of distinct viral genotypes in brain and lymph node compartments of HIV-1-infected individuals. Viral Immunol 4:123–131CrossRefPubMedGoogle Scholar
  36. Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J (1999) Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol 73:10020–10028PubMedPubMedCentralGoogle Scholar
  37. Huang DW, Raley C, Jiang MK, Zheng X, Liang D, Rehman MT, Highbarger HC, Jiao X, Sherman B, Ma L, Chen X, Skelly T, Troyer J, Stephens R, Imamichi T, Pau A, Lempicki RA, Tran B, Nissley D, Lane HC, Dewar RL (2016) Towards better precision medicine: PacBio single-molecule long reads resolve the interpretation of HIV drug resistant mutation profiles at explicit quasispecies (haplotype) level. J Data Min Genomic Proteomic 7:182Google Scholar
  38. Hughes ES, Bell JE, Simmonds P (1997) Investigation of the dynamics of the spread of human immunodeficiency virus to brain and other tissues by evolutionary analysis of sequences from the p17gag and env genes. J Virol 71:1272–1280PubMedPubMedCentralGoogle Scholar
  39. Jensen MA, Coetzer M, van 't Wout AB, Morris L, Mullins JI (2006) A reliable phenotype predictor for human immunodeficiency virus type 1 subtype C based on envelope V3 sequences. J Virol 80:4698–4704CrossRefPubMedPubMedCentralGoogle Scholar
  40. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  41. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, Sun C, Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr JL, Gao F, Anderson JA, Ping LH, Swanstrom R, Tomaras GD, Blattner WA, Goepfert PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Cohen MS, Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee HY, Wood N, Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM (2008) Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 105:7552–7557CrossRefPubMedPubMedCentralGoogle Scholar
  42. Korber BT, Kunstman KJ, Patterson BK, Furtado M, McEvilly MM, Levy R, Wolinsky SM (1994) Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J Virol 68:7467–7481PubMedPubMedCentralGoogle Scholar
  43. Korlach J (2017). Understanding accuracy in SMRT® sequencing. Pacific Biosciences. http://www.pacb.com/wp-content/uploads/2015/09/Perspective_UnderstandingAccuracySMRTSequencing.pdf. Accessed December 1, 2017
  44. Laird Smith M, Murrell B, Eren K, Ignacio C, Landais E, Weaver S, Phung P, Ludka C, Hepler L, Caballero G, Pollner T, Guo Y, Richman D, The IAVI Protocol C investigators & The IAVI African HIV Research Network, Poignard P, Paxinos EE, Kosakovsky Pond SL, Smith DM (2016) Rapid sequencing of complete env genes from primary HIV-1 samples. Virus Evolution 2:vew018CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lamers SL, Gray RR, Salemi M, Huysentruyt LC, McGrath MS (2011) HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues. Infect Genet Evol 11:31–37CrossRefPubMedGoogle Scholar
  46. Lane JH, Sasseville VG, Smith MO, Vogel P, Pauley DR, Heyes MP, Lackner AA (1996) Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J Neuro-Oncol 2:423–432Google Scholar
  47. Li B, Decker JM, Johnson RW, Bibollet-Ruche F, Wei X, Mulenga J, Allen S, Hunter E, Hahn BH, Shaw GM, Blackwell JL, Derdeyn CA (2006) Evidence for potent autologous neutralizing antibody titers and compact envelopes in early infection with subtype C human immunodeficiency virus type 1. J Virol 80:5211–5218CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liner KJ 2nd, Ro MJ, Robertson KR (2010) HIV, antiretroviral therapies, and the brain. Curr HIV/AIDS Rep 7:85–91CrossRefPubMedGoogle Scholar
  49. Liu Y, Tang XP, McArthur JC, Scott J, Gartner S (2000) Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J Neuro-Oncol 6(Suppl 1):S70–S81Google Scholar
  50. Liu Y, Curlin ME, Diem K, Zhao H, Ghosh AK, Zhu H, Woodward AS, Maenza J, Stevens CE, Stekler J, Collier AC, Genowati I, Deng W, Zioni R, Corey L, Zhu T, Mullins JI (2008) Env length and N-linked glycosylation following transmission of human immunodeficiency virus type 1 subtype B viruses. Virology 374:229–233CrossRefPubMedPubMedCentralGoogle Scholar
  51. McArthur JC, Steiner J, Sacktor N, Nath A (2010) Human immunodeficiency virus-associated neurocognitive disorders: mind the gap. Ann Neurol 67:699–714PubMedGoogle Scholar
  52. McCrossan M, Marsden M, Carnie FW, Minnis S, Hansoti B, Anthony IC, Brettle RP, Bell JE, Simmonds P (2006) An immune control model for viral replication in the CNS during presymptomatic HIV infection. Brain 129:503–516CrossRefPubMedGoogle Scholar
  53. McElroy K, Thomas T, Luciani F (2015) Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions. Microb Inform Exp 4:1CrossRefGoogle Scholar
  54. Mefford ME, Gorry PR, Kunstman K, Wolinsky SM, Gabuzda D (2008) Bioinformatic prediction programs underestimate the frequency of CXCR4 usage by R5X4 HIV type 1 in brain and other tissues. AIDS Res Hum Retrovir 24:1215–1220CrossRefPubMedGoogle Scholar
  55. Mulinge M, Lemaire M, Servais JY, Rybicki A, Struck D, da Silva ES, Verhofstede C, Lie Y, Seguin-Devaux C, Schmit JC, Bercoff DP (2013) HIV-1 tropism determination using a phenotypic Env recombinant viral assay highlights overestimation of CXCR4-usage by genotypic prediction algorithms for CRF01_AE and CRF02_AG [corrected]. PLoS One 8:e60566CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nolan DJ, Lamers SL, Rose R, Dollar JJ, Salemi M, McGrath MS (2017) Single genome sequencing of expressed and proviral HIV-1 envelope glycoprotein 120 (gp120) and nef genes. Bio-protocol 7:e2334CrossRefGoogle Scholar
  57. Nottet HS, Gendelman HE (1995) Unraveling the neuroimmune mechanisms for the HIV-1-associated cognitive/motor complex. Immunol Today 16:441–448CrossRefPubMedGoogle Scholar
  58. O'Connell O, Repik A, Reeves JD, Gonzalez-Perez MP, Quitadamo B, Anton ED, Duenas-Decamp M, Peters P, Lin R, Zolla-Pazner S, Corti D, Wallace A, Wang S, Kong XP, Lu S, Clapham PR (2013) Efficiency of bridging-sheet recruitment explains HIV-1 R5 envelope glycoprotein sensitivity to soluble CD4 and macrophage tropism. J Virol 87:187–198CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ohagen A, Devitt A, Kunstman KJ, Gorry PR, Rose PP, Korber B, Taylor J, Levy R, Murphy RL, Wolinsky SM, Gabuzda D (2003) Genetic and functional analysis of full-length human immunodeficiency virus type 1 env genes derived from brain and blood of patients with AIDS. J Virol 77:12336–12345CrossRefPubMedPubMedCentralGoogle Scholar
  60. Peters PJ, Bhattacharya J, Hibbitts S, Dittmar MT, Simmons G, Bell J, Simmonds P, Clapham PR (2004) Biological analysis of human immunodeficiency virus type 1 R5 envelopes amplified from brain and lymph node tissues of AIDS patients with neuropathology reveals two distinct tropism phenotypes and identifies envelopes in the brain that confer an enhanced tropism and fusigenicity for macrophages. J Virol 78:6915–6926CrossRefPubMedPubMedCentralGoogle Scholar
  61. Peters PJ, Sullivan WM, Duenas-Decamp MJ, Bhattacharya J, Ankghuambom C, Brown R, Luzuriaga K, Bell J, Simmonds P, Ball J, Clapham PR (2006) Non-macrophage-tropic human immunodeficiency virus type 1 R5 envelopes predominate in blood, lymph nodes, and semen: implications for transmission and pathogenesis. J Virol 80:6324–6332CrossRefPubMedPubMedCentralGoogle Scholar
  62. Peters PJ, Duenas-Decamp MJ, Sullivan WM, Brown R, Ankghuambom C, Luzuriaga K, Robinson J, Burton DR, Bell J, Simmonds P, Ball J, Clapham P (2008) Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors. Retrovirology 5:5CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pikora CA (2004) Glycosylation of the ENV spike of primate immunodeficiency viruses and antibody neutralization. Curr HIV Res 2:243–254CrossRefPubMedGoogle Scholar
  64. Pillai SK, Pond SL, Liu Y, Good BM, Strain MC, Ellis RJ, Letendre S, Smith DM, Gunthard HF, Grant I, Marcotte TD, McCutchan JA, Richman DD, Wong JK (2006) Genetic attributes of cerebrospinal fluid-derived HIV-1 env. Brain 129:1872–1883CrossRefPubMedGoogle Scholar
  65. Poon AF, Swenson LC, Bunnik EM, Edo-Matas D, Schuitemaker H, van 't Wout AB, Harrigan PR (2012) Reconstructing the dynamics of HIV evolution within hosts from serial deep sequence data. PLoS Comput Biol 8:e1002753CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ritola K, Robertson K, Fiscus SA, Hall C, Swanstrom R (2005) Increased human immunodeficiency virus type 1 (HIV-1) env compartmentalization in the presence of HIV-1-associated dementia. J Virol 79:10830–10834CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rose R, Lamers SL, Dollar JJ, Grabowski MK, Hodcroft EB, Ragonnet-Cronin M, Wertheim JO, Redd AD, German D, Laeyendecker O (2017) Identifying transmission clusters with cluster picker and HIV-TRACE. AIDS Res Hum Retrovir 33:211–218CrossRefPubMedGoogle Scholar
  68. Rozera G, Abbate I, Ciccozzi M, Lo Presti A, Bruselles A, Vlassi C, D'Offizi G, Narciso P, Giombini E, Bartolini B, Ippolito G, Capobianchi MR (2012) Ultra-deep sequencing reveals hidden HIV-1 minority lineages and shifts of viral population between the main cellular reservoirs of the infection after therapy interruption. J Med Virol 84:839–844CrossRefPubMedGoogle Scholar
  69. Sagar M, Laeyendecker O, Lee S, Gamiel J, Wawer MJ, Gray RH, Serwadda D, Sewankambo NK, Shepherd JC, Toma J, Huang W, Quinn TC (2009) Selection of HIV variants with signature genotypic characteristics during heterosexual transmission. J Infect Dis 199:580–589CrossRefPubMedPubMedCentralGoogle Scholar
  70. Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, Guffey MB, Keele BF, Derdeyn CA, Farmer P, Hunter E, Allen S, Manigart O, Mulenga J, Anderson JA, Swanstrom R, Haynes BF, Athreya GS, Korber BT, Sharp PM, Shaw GM, Hahn BH (2008) Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J Virol 82:3952–3970CrossRefPubMedPubMedCentralGoogle Scholar
  71. Salemi M, Lamers SL, Yu S, de Oliveira T, Fitch WM, McGrath MS (2005) Phylodynamic analysis of human immunodeficiency virus type 1 in distinct brain compartments provides a model for the neuropathogenesis of AIDS. J Virol 79:11343–11352CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R (2011) HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog 7:e1002286CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sede MM, Moretti FA, Laufer NL, Jones LR, Quarleri JF (2014) HIV-1 tropism dynamics and phylogenetic analysis from longitudinal ultra-deep sequencing data of CCR5- and CXCR4-using variants. PLoS One 9:e102857CrossRefPubMedPubMedCentralGoogle Scholar
  74. Shapshak P, Segal DM, Crandall KA, Fujimura RK, Zhang BT, Xin KQ, Okuda K, Petito CK, Eisdorfer C, Goodkin K (1999) Independent evolution of HIV type 1 in different brain regions. AIDS Res Hum Retrovir 15:811–820CrossRefPubMedGoogle Scholar
  75. Simmonds P, Balfe P, Peutherer JF, Ludlam CA, Bishop JO, Brown AJ (1990) Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J Virol 64:864–872PubMedPubMedCentralGoogle Scholar
  76. Smit TK, Brew BJ, Tourtellotte W, Morgello S, Gelman BB, Saksena NK (2004) Independent evolution of human immunodeficiency virus (HIV) drug resistance mutations in diverse areas of the brain in HIV-infected patients, with and without dementia, on antiretroviral treatment. J Virol 78:10133–10148CrossRefPubMedPubMedCentralGoogle Scholar
  77. Soda Y, Shimizu N, Jinno A, Liu HY, Kanbe K, Kitamura T, Hoshino H (1999) Establishment of a new system for determination of coreceptor usages of HIV based on the human glioma NP-2 cell line. Biochem Biophys Res Commun 258:313–321CrossRefPubMedGoogle Scholar
  78. Strain MC, Letendre S, Pillai SK, Russell T, Ignacio CC, Gunthard HF, Good B, Smith DM, Wolinsky SM, Furtado M, Marquie-Beck J, Durelle J, Grant I, Richman DD, Marcotte T, McCutchan JA, Ellis RJ, Wong JK (2005) Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. J Virol 79:1772–1788CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S (2015) Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog 11:e1004720CrossRefPubMedPubMedCentralGoogle Scholar
  80. Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD (1996) Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 39:705–711CrossRefPubMedGoogle Scholar
  81. Thomas ER, Dunfee RL, Stanton J, Bogdan D, Taylor J, Kunstman K, Bell JE, Wolinsky SM, Gabuzda D (2007) Macrophage entry mediated by HIV Envs from brain and lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion. Virology 360:105–119CrossRefPubMedGoogle Scholar
  82. Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38:e159CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tsai HC, Chou PY, Wann SR, Lee SS, Chen YS (2015) Chemokine co-receptor usage in HIV-1-infected treatment-naive voluntary counselling and testing clients in Southern Taiwan. BMJ Open 5:e007334CrossRefPubMedPubMedCentralGoogle Scholar
  84. Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang XJ, Buck D, Au KF (2017). Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Res 6:100Google Scholar
  85. Wertheim JO, Leigh Brown AJ, Hepler NL, Mehta SR, Richman DD, Smith DM, Kosakovsky Pond SL (2014) The global transmission network of HIV-1. J Infect Dis 209:304–313CrossRefPubMedGoogle Scholar
  86. Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193:905–915CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wong JK, Ignacio CC, Torriani F, Havlir D, Fitch NJ, Richman DD (1997) In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. J Virol 71:2059–2071PubMedPubMedCentralGoogle Scholar
  88. van't Wout AB, Ran LJ, Kuiken CL, Kootstra NA, Pals ST, Schuitemaker H (1998). Analysis of the temporal relationship between human immunodeficiency virus type 1 quasispecies in sequential blood samples and various organs obtained at autopsy. J Virol 72: 488–496Google Scholar
  89. Wu X, Parast AB, Richardson BA, Nduati R, John-Stewart G, Mbori-Ngacha D, Rainwater SM, Overbaugh J (2006) Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J Virol 80:835–844CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yi Y, Chen W, Frank I, Cutilli J, Singh A, Starr-Spires L, Sulcove J, Kolson DL, Collman RG (2003) An unusual syncytia-inducing human immunodeficiency virus type 1 primary isolate from the central nervous system that is restricted to CXCR4, replicates efficiently in macrophages, and induces neuronal apoptosis. J Neuro-Oncol 9:432–441Google Scholar
  91. Zhang H, Tully DC, Hoffmann FG, He J, Kankasa C, Wood C (2010) Restricted genetic diversity of HIV-1 subtype C envelope glycoprotein from perinatally infected Zambian infants. PLoS One 5:e9294CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhou S, Bednar MM, Sturdevant CB, Hauser BM, Swanstrom R (2016) Deep sequencing of the HIV-1 env gene reveals discrete X4 lineages and linkage disequilibrium between X4 and R5 viruses in the V1/V2 and V3 variable regions. J Virol 90:7142–7158CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2018

Authors and Affiliations

  • Robin L. Brese
    • 1
  • Maria Paz Gonzalez-Perez
    • 1
  • Matthew Koch
    • 1
  • Olivia O’Connell
    • 1
  • Katherine Luzuriaga
    • 1
  • Mohan Somasundaran
    • 1
  • Paul R. Clapham
    • 1
  • James Jarad Dollar
    • 2
  • David J Nolan
    • 2
  • Rebecca Rose
    • 2
    Email author
  • Susanna L. Lamers
    • 2
  1. 1.Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Bioinfoexperts, LLCThibodauxUSA

Personalised recommendations