Journal of NeuroVirology

, Volume 23, Issue 6, pp 875–885 | Cite as

Resting-state functional magnetic resonance imaging in clade C HIV: within-group association with neurocognitive function

  • Lindie du Plessis
  • Robert H. Paul
  • Jackie Hoare
  • Dan J. Stein
  • Paul A. Taylor
  • Ernesta M. Meintjes
  • John A. Joska


Neuroimaging abnormalities are common in chronically infected HIV-positive individuals. The majority of studies have focused on structural or functional brain outcomes in samples infected with clade B HIV. While preliminary work reveals a similar structural imaging phenotype in patients infected with clade C HIV, no study has examined functional connectivity (FC) using resting-state functional magnetic resonance imaging (rs-fMRI) in clade C HIV. In particular, we were interested to explore HIV-only effects on neurocognitive function using associations with rs-fMRI. In the present study, 56 treatment-naïve, clade C HIV-infected participants (age 32.27 ± 5.53 years, education 10.02 ± 1.72 years, 46 female) underwent rs-fMRI and cognitive testing. Individual resting-state networks were correlated with global deficit scores (GDS) in order to explore associations between them within an HIV-positive sample. Results revealed ten regions in six resting-state networks where FC inversely correlated with GDS scores (worse performance). The networks affected included three independent attention networks: the default mode network (DMN), sensorimotor network, and basal ganglia. Connectivity in these regions did not correlate with plasma viral load or CD4 cell count. The design of this study is unique and has not been previously reported in clade B. The abnormalities related to neurocognitive performance reported in this study of clade C may reflect late disease stage and/or unique host/viral dynamics. Longitudinal studies will help to clarify the clinical significance of resting-state alterations in clade C HIV.


Human immunodeficiency virus (HIV) Neurocognitive deficits Resting-state functional magnetic resonance imaging Resting-state functional connectivity (RSFC) Global deficit scores (GDS) 



The authors would like to thank the National Institute of Mental Health for supporting this research. We also want to acknowledge the South African Research Chairs Initiative of the Department of Science and Technology, National Research Foundation of South Africa, National Institute of Health, Medical Research Council of South Africa, and NIMH and NINDS Intramural Research Programs of the NIH for further partial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ances BM, Roc AC, Wang J, Korczykowski M, Okawa J, Stern J, Kim J, Wolf R, Lawler K, Kolson DL, Detre JA (2006) Caudate blood flow and volume are reduced in HIV+ neurocognitively impaired patients. Neurology 66(6):862–866. CrossRefPubMedGoogle Scholar
  2. Ann HW, Jun S, Shin NY, Han S, Ahn JY, Ahn MY, Jeon YD, Jung IY, Kim MH, Jeong WY, Ku NS (2016) Characteristics of resting-state functional connectivity in HIV-associated neurocognitive disorder. PLoS One 11(4):e0153493. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslén M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aylward EH, Henderer JD, McArthur JC, Brettschneider PD, Harris GJ, Barta PE, Pearlson GD (1993) Reduced basal ganglia volume in HIV-1-associated dementia results from quantitative neuroimaging. Neurology 43(10):2099–2099. CrossRefPubMedGoogle Scholar
  5. Beckmann CF, Mackay CE, Filippini N, Smith SM (2009) Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. NeuroImage 47(Suppl 1):S148CrossRefGoogle Scholar
  6. Benedict RH, Schretlen D, Groninger L, Dobraski M, Shpritz B (1996) Revision of the brief visuospatial memory test: studies of normal performance, reliability, and validity. Psychol Assess 8(2):145CrossRefGoogle Scholar
  7. Berger JR, Arendt G (2000) HIV dementia: the role of the basal ganglia and dopaminergic systems. J Psychopharmacol 14(3):214–221. CrossRefPubMedGoogle Scholar
  8. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM (2010) Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107(10):4734–4739. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bouwman FH, Skolasky RL, Hes D, Selnes OA, Glass JD, Nance-Sproson TE, Royal W, Dal Pan GJ, McArthur JC (1998) Variable progression of HIV-associated dementia. Neurology 50(6):1814–1820 CrossRefPubMedGoogle Scholar
  10. Brandt J, Benedict RHB (2001) Hopkins Verbal Learning Test, Revised: Professional manual. Psychological Assessment Resource, LutzGoogle Scholar
  11. Cancelliere AE, Kertesz A (1990) Lesion localization in acquired deficits of emotional expression and comprehension. Brain Cogn 13(2):133–147 CrossRefPubMedGoogle Scholar
  12. Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, Heaton RK (2004) Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol 26(3):307–319 CrossRefPubMedGoogle Scholar
  13. Corrigan JD, Hinkeldey NS (1987) Relationships between parts A and B of the Trail Making Test. J Clin Psychol 43(4):402–409.<402::AID-JCLP2270430411>3.0.CO;2-E CrossRefPubMedGoogle Scholar
  14. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173. CrossRefPubMedGoogle Scholar
  15. Cysique LA, Brew BJ (2009) Neuropsychological functioning and antiretroviral treatment in HIV/AIDS: a review. Neuropsychol Rev 19(2):169–185. CrossRefPubMedGoogle Scholar
  16. D’Elia L, Satz P (1996) Color trails test. Psychological Assessment Resources, Inc., OdessaGoogle Scholar
  17. Dal Pan GJ, McArthur JH, Aylward E, Selnes OA, Nance-Sproson TE, Kumar AJ, Mellits ED, McArthur JC (1992) Patterns of cerebral atrophy in HIV–1–infected individuals results of a quantitative MRI analysis. Neurology 42(11):2125. CrossRefPubMedGoogle Scholar
  18. De Francesco D, Underwood J, Post FA, Vera JH, Williams I, Boffito M, Sachikonye M, Anderson J, Mallon PW, Winston A, Sabin CA (2016) Defining cognitive impairment in people-living-with-HIV: the POPPY study. BMC Infect Dis 16(1):617. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gartner S (2000) HIV infection and dementia. Science 287(5453):602–604. CrossRefPubMedGoogle Scholar
  20. Gisslén M, Price RW, Nilsson S (2011) The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis 11(1):356. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Golden CJ (1978) Stroop color and word test: a manual for clinical and experimental uses. Stoelting, ChicagoGoogle Scholar
  22. Grant DA, Berg E (1948) A behavioral analysis of degree of reinforcement and ease of shifting to new responses in Weigl-type card-sorting problem. J Exp Psychol 38:404–411. CrossRefPubMedGoogle Scholar
  23. Graybiel AM (2000) The basal ganglia. Curr Biol 10(14):R509–R511. CrossRefPubMedGoogle Scholar
  24. Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15(6):638–644. CrossRefPubMedGoogle Scholar
  25. Groenewegen HJ (2003) The basal ganglia and motor control. Neural Plast 10(1–2):107–120. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Heaps JM, Joska J, Hoare J, Ortega M, Agrawal A, Seedat S, Ances BM, Stein DJ, Paul R (2012) Neuroimaging markers of human immunodeficiency virus infection in South Africa. J Neuro-Oncol 18(3):151–156. Google Scholar
  27. Heaton RK, Marcotte TD, Mindt MR, Sadek J, Moore DJ, Bentley H, McCutchan JA, Reicks C, Grant I (2004) The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc 10(03):317–331. CrossRefPubMedGoogle Scholar
  28. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy CHARTER study. Neurology 75(23):2087–2096 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Juengst SB, Aizenstein HJ, Figurski J, Lopez OL, Becker JT (2007) Alterations in the hemodynamic response function in cognitively impaired HIV/AIDS subjects. J Neurosci Methods 163(2):208–212 CrossRefPubMedGoogle Scholar
  30. Knight JA, Kaplan E (2003) The handbook of Rey-Osterrieth Complex Figure usage: Clinical and research applications. Psychological Assessment Resources, Inc., LutzGoogle Scholar
  31. Lecrubier Y, Sheehan DV, Weiller E, Amorim P, Bonora I, Sheehan KH, Janavs J, Dunbar GC (1997) The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur Psychiatry 12(5):224–231. CrossRefGoogle Scholar
  32. McArthur JC (2004) HIV dementia: an evolving disease. J Neuroimmunol 157(1):3–10 CrossRefPubMedGoogle Scholar
  33. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425 CrossRefPubMedGoogle Scholar
  34. Nath A, Schiess N, Venkatesan A, Rumbaugh J, Sacktor N, Mcarthur J (2008) Evolution of HIV dementia with HIV infection. Int Rev Psychiatry 20(1):25–31 CrossRefPubMedGoogle Scholar
  35. Ortega M, Heaps JM, Joska J, Vaida F, Seedat S, Stein DJ, Paul R, Ances BM (2013) HIV clades B and C are associated with reduced brain volumetrics. J Neuro-Oncol 19(5):479–487. Google Scholar
  36. Ortega M, Brier MR, Ances BM (2015) Effects of HIV and combination antiretroviral therapy (cART) on cortico-striatal functional connectivity. AIDS 29(6):703. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25(1):563–593. CrossRefPubMedGoogle Scholar
  38. Paul R, Cohen R, Navia B, Tashima K (2002) Relationships between cognition and structural neuroimaging findings in adults with human immunodeficiency virus type-1. Neurosci Biobehav Rev 26(3):353–359. CrossRefPubMedGoogle Scholar
  39. Paul RH, Joska JA, Woods C, Seedat S, Engelbrecht S, Hoare J, Heaps J, Valcour V, Ances B, Baker LM, Salminen LE (2014) Impact of the HIV Tat C30C31S dicysteine substitution on neuropsychological function in patients with clade C disease. J Neuro-Oncol 20(6):627–635 Google Scholar
  40. Paulmann S, Pell MD, Kotz SA (2008) Functional contributions of the basal ganglia to emotional prosody: evidence from ERPs. Brain Res 1217:171–178. CrossRefPubMedGoogle Scholar
  41. Qiu W, Yan B, Li J, Tong L, Wang L, Shi D (2011) A resting-state fMRI study of patients with HIV infection based on regional homogeneity method. In: 2011 seventh international conference on Natural computation (ICNC 2011) 2:997–1000. IEEE.
  42. Rotta I, Almeida SMD (2011) Genotypical diversity of HIV clades and central nervous system impairment. Arq Neuropsiquiatr 69(6):964–972. CrossRefPubMedGoogle Scholar
  43. Salib E, McCarthy J (2002) Mental Alternation Test (MAT): a rapid and valid screening tool for dementia in primary care. Int J Geriatr Psychiatry 17(12):1157–1161. CrossRefPubMedGoogle Scholar
  44. Selnes OA (2005) Memory loss in persons with HIV/AIDS: assessment and strategies for coping. AIDS Read 15(6):289–294PubMedGoogle Scholar
  45. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219 CrossRefPubMedGoogle Scholar
  46. Taylor PA, Saad ZS (2013) FATCAT:(an efficient) functional and tractographic connectivity analysis toolbox. Brain Connect 3(5):523–535. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Thomas JB, Brier MR, Snyder AZ, Vaida FF, Ances BM (2013) Pathways to neurodegeneration effects of HIV and aging on resting-state functional connectivity. Neurology 80(13):1186–1193 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Van Den Heuvel MP, Pol HEH (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20(8):519–534 CrossRefPubMedGoogle Scholar
  49. Wang X, Foryt P, Ochs R, Chung JH, Wu Y, Parrish T, Ragin AB (2011) Abnormalities in resting-state functional connectivity in early human immunodeficiency virus infection. Brain Connect 1(3):207–217. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang J, Zuo X, Dai Z, Xia M, Zhao Z, Zhao X, Jia J, Han Y, He Y (2013) Disrupted functional brain connectome in individuals at risk for Alzheimer's disease. Biol Psychiatry 73(5):472–481 CrossRefPubMedGoogle Scholar
  51. Watkins CC, Treisman GJ (2015) Cognitive impairment in patients with AIDS—prevalence and severity. HIV/AIDS (Auckl) 7:35–47. Google Scholar
  52. Wechsler D (1997) Wechsler memory scale (WMS-III). Psychological Corporation, San AntonioGoogle Scholar
  53. Wechsler D (1999) Manual for the Wechsler abbreviated intelligence scale (WASI). The Psychological Corporation, San AntonioGoogle Scholar
  54. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the general linear model. NeuroImage 92:381–397 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhou B, Liu Y, Zhang Z, An N, Yao H, Wang P, Wang L, Xi Z, Jiang T (2013) Impaired functional connectivity of the thalamus in Alzheimer’s disease and mild cognitive impairment: a resting-state fMRI study. Curr Alzheimer Res 10(7):754–766CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2017

Authors and Affiliations

  1. 1.MRC/UCT Medical Imaging Research UnitUniversity of Cape TownCape TownSouth Africa
  2. 2.Department of Human BiologyUniversity of Cape TownCape TownSouth Africa
  3. 3.Missouri Institute of Mental HealthUniversity of MissouriColumbiaUSA
  4. 4.Department of PsychiatryUniversity of Cape TownCape TownSouth Africa
  5. 5.MRC Unit on Risk & Resilience in Mental DisordersCape TownSouth Africa
  6. 6.African Institute for Mathematical SciencesCape TownSouth Africa
  7. 7.Scientific and Statistical Computing CoreNational Institutes of HealthBethesdaUSA
  8. 8.HIV Mental Health Research Unit, Division of NeuropsychiatryUniversity of Cape TownCape TownSouth Africa

Personalised recommendations