Advertisement

Journal of NeuroVirology

, Volume 23, Issue 4, pp 593–602 | Cite as

Improvements in brain and behavior following eradication of hepatitis C

  • Taylor KuhnEmail author
  • Philip Sayegh
  • Jacob D. Jones
  • Jason Smith
  • Manoj K. Sarma
  • A. Ragin
  • Elyse J. Singer
  • M. Albert Thomas
  • April D. Thames
  • Steven A. Castellon
  • Charles H. Hinkin
Article

Abstract

Despite recent advances in treatment, hepatitis C remains a significant public health problem. The hepatitis C virus (HCV) is known to infiltrate the brain, yet findings from studies on associated neurocognitive and neuropathological changes are mixed. Furthermore, it remains unclear if HCV eradication improves HCV-associated neurological compromise. This study examined the longitudinal relationship between neurocognitive and neurophysiologic markers among healthy HCV− controls and HCV+ adults following successful HCV eradication. We hypothesized that neurocognitive outcomes following treatment would be related to both improved cognition and white matter integrity. Participants included 57 HCV+ participants who successfully cleared the virus at the end of treatment (sustained virologic responders [SVRs]) and 22 HCV− controls. Participants underwent neuropsychological testing and, for a nested subset of participants, neuroimaging (diffusion tensor imaging) at baseline and 12 weeks following completion of HCV therapy. Contrary to expectation, group-level longitudinal analyses did not reveal significant improvement in neurocognitive performance in the SVRs compared to the control group. However, a subgroup of SVRs demonstrated a significant improvement in cognition relative to controls, which was related to improved white matter integrity. Indeed, neuroimaging data revealed beneficial effects associated with clearing the virus, particularly in the posterior corona radiata and the superior longitudinal fasciculus. Findings suggest that a subgroup of HCV+ patients experienced improvements in cognitive functioning following eradication of HCV, which appears related to positive changes in white matter integrity. Future research should examine whether any additional improvements in neurocognition and white matter integrity among SVRs occur with longer follow-up periods.

Keywords

Hepatitis C virus Neurocognition Neuropathology Diffusion tensor imaging White matter integrity Sustained virologic response 

Notes

Acknowledgments

Funding support for the current study was provided through the NIH (RO1MH083553, P.I. C.H. Hinkin). E.J. Singer is supported by the National Institutes of Health grant #1U24MH100929-01 (National Neurological AIDS Bank). T. Kuhn and P. Sayegh were supported by an NIH T32 Training Grant (MH19535; P.I. C.H.).

Compliance with ethical standards

All procedures were approved by the University of California, Los Angeles and VA Greater Los Angeles Healthcare System Institutional Review Boards. All participants provided written informed consent prior to entering the study.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Benedict RH (1997) Brief visuospatial memory test—revised. Psychological Assessment Resources, Odessa (Florida)Google Scholar
  2. Benton AL, Hamsher KS, Sivan AB (1994) Multilingual aphasia examination (MAE), 3rd edn. Psychological Assessment Resources, Odessa (Florida)Google Scholar
  3. Bladowska J, Zimny A, Kołtowska A, Szewczyk P, Knysz B, Gąsiorowski J et al (2013a) Evaluation of metabolic changes within the normal appearing gray and white matters in neurologically asymptomatic HIV-1-positive and HCV-positive patients: magnetic resonance spectroscopy and immunologic correlation. Eur J Radiol 82:686–692CrossRefPubMedGoogle Scholar
  4. Bladowska J, Zimny A, Knysz B, Małyszczak K, Kołtowska A, Szewczyk P et al (2013b) Evaluation of early cerebral metabolic, perfusion and microstructural changes in HCV-positive patients: a pilot study. J Hepatol 59:651–657CrossRefPubMedGoogle Scholar
  5. Byrnes V, Miller A, Lowry D, Hill E, Weinstein C, Alsop D et al (2012) Effects of anti-viral therapy and HCV clearance on cerebral metabolism and cognition. J Hepatol 56:549–556CrossRefPubMedGoogle Scholar
  6. Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I et al (2004) Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol 26:307–319CrossRefPubMedGoogle Scholar
  7. Cherner M, Letendre S, Heaton RK, Durelle J, Marquie-Beck J, Gragg B et al (2005) Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology 64:1343–1347CrossRefPubMedGoogle Scholar
  8. Clifford DB, Smurzynski M, Park LS, Yeh T-M, Zhao Y, Blair L et al (2009) Effects of active HCV replication on neurologic status in HIV RNA virally suppressed patients. Neurology 73:309–314CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cloak CC, Chang L, Ernst T (2004) Increased frontal white matter diffusion is associated with glial metabolites and psychomotor slowing in HIV. J Neuroimmunol 157:147–152CrossRefPubMedGoogle Scholar
  10. Córdoba J, Flavià M, Jacas C, Sauleda S, Esteban JI, Vargas V et al (2003) Quality of life and cognitive function in hepatitis C at different stages of liver disease. J Hepatol 39:231–238CrossRefPubMedGoogle Scholar
  11. Forton D, Thomas HC, Murphy CA, Allsop JM, Foster GR, Main J et al (2002) Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease. Hepatology 35:433–439CrossRefPubMedGoogle Scholar
  12. Forton DM, Karayiannis P, Mahmud N, Taylor-Robinson SD, Thomas HC (2004) Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants. J Virol 78:5170–5183CrossRefPubMedPubMedCentralGoogle Scholar
  13. Forton DM, Taylor-Robinson SD, Thomas HC (2006) Central nervous system changes in hepatitis C virus infection. Eur J Gastroenterol Hepatol 18:333–338CrossRefPubMedGoogle Scholar
  14. Gaeta L, Di Palo M, Fasanaro AM, Loguercio C (2013) Cognitive dysfunctions in hepatitis C virus (HCV) infection. A mini review. Curr Neurobiol 4:43–46Google Scholar
  15. Gronwall DMA (1977) Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills 44:367–373CrossRefPubMedGoogle Scholar
  16. Grover VP, Pavese N, Koh SB, Wylezinska M, Saxby BK, Gerhard A et al (2012) Cerebral microglial activation in patients with hepatitis C: in vivo evidence of neuroinflammation. J Viral Hepat 19:89–96CrossRefGoogle Scholar
  17. Hennes EM, Zeniya M, Czaja AJ, Parés A, Dalekos GN, Krawitt EL et al (2008) Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 48:169–176CrossRefPubMedGoogle Scholar
  18. Hilsabeck RC, Hassanein TI, Carlson MD, Ziegler EA, Perry W (2003) Cognitive functioning and psychiatric symptomatology in patients with chronic hepatitis C. J Int Neuropsychol Soc 9:847–854CrossRefPubMedGoogle Scholar
  19. Hinkin CH, Castellon SA, Levine AJ, Barclay TR, Singer EJ (2008) Neurocognition in individuals co-infected with HIV and hepatitis C. J Addict Dis 27:11–17CrossRefPubMedPubMedCentralGoogle Scholar
  20. Huckans M, Fuller B, Wheaton V, Jaehnert S, Ellis C, Kolessar M, & Sasaki AW (2015) A longitudinal study evaluating the effects of interferon-alpha therapy on cognitive and psychiatric function in adults with chronic hepatitis C. J Psychosom Res 78(2):184–192Google Scholar
  21. Juengling FD, Ebert D, Gut O, Engelbrecht MA, Rasenack J, Nitzsche EU et al (2000) Prefrontal cortical hypometabolism during low-dose interferon alpha treatment. Psychopharmacology 152:383–389CrossRefPubMedGoogle Scholar
  22. Kløve H (1963) Grooved pegboard. Lafayette Instruments, Lafayette (Indiana)Google Scholar
  23. Kraus MR, Schäfer A, Teuber G, Porst H, Sprinzl K, Wollschläger S et al (2013) Improvement of neurocognitive function in responders to an antiviral therapy for chronic hepatitis C. Hepatology 58:497–504CrossRefPubMedGoogle Scholar
  24. Laskus T, Radkowski M, Bednarska A, Wilkinson J, Adair D, Nowicki M et al (2002) Detection and analysis of hepatitis C virus sequences in cerebrospinal fluid. J Virol 76:10064–10068CrossRefPubMedPubMedCentralGoogle Scholar
  25. Letendre S, Paulino AD, Rockenstein E, Adame A, Crews L, Cherner M et al (2007) Pathogenesis of hepatitis C virus coinfection in the brains of patients infected with HIV. J Infect Dis 196:361–370CrossRefPubMedGoogle Scholar
  26. Lowry D, Burke T, Galvin Z, Ryan JD, Russell J, Murphy A et al (2016) Is psychosocial and cognitive dysfunction misattributed to the virus in hepatitis C infection? Select psychosocial contributors identified. J Viral Hepat 23:584–595CrossRefPubMedGoogle Scholar
  27. McAndrews MP, Farcnik K, Carlen P, Damyanovich A, Mrkonjic M, Jones S et al (2005) Prevalence and significance of neurocognitive dysfunction in hepatitis C in the absence of correlated risk factors. Hepatology 41:801–808CrossRefPubMedGoogle Scholar
  28. Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD et al (2008) The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity. Am J Psychiatry 165:203–213CrossRefPubMedGoogle Scholar
  29. Posada C, Morgan EE, Moore DJ, Woods SP, Letendre SL, Grant I et al (2009) Neurocognitive effects of the hepatitis C virus. Curr Hepat Rep 8(S1):18–26CrossRefGoogle Scholar
  30. Price RW, Yiannoutsos CT, Clifford DB, Zaborski L, Tselis A, Sidtis JJ et al (1999) Neurological outcomes in late HIV infection: adverse impact of neurological impairment on survival and protective effect of antiviral therapy. AIDS 13:1677–1685CrossRefPubMedGoogle Scholar
  31. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G et al (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: relationship to CNS immune responses and depression. Mol Psychiatry 15:393–403CrossRefPubMedGoogle Scholar
  32. Reitan RM (1958) Trail making test: manual for administration, scoring and interpretation. Department of Neurology, Section of Neuropsychology, Indiana University Medical Center, IndianapolisGoogle Scholar
  33. Sämann PG, Schlegel J, Müller G, Prantl F, Emminger C, Auer DP (2003) Serial proton MR spectroscopy and diffusion imaging findings in HIV-related herpes simplex encephalitis. Am J Neuroradiol 24:2015–2019PubMedGoogle Scholar
  34. Shapiro AM, Benedict RHB, Schretlen D, Brandt J (1999) Construct and concurrent validity of the Hopkins verbal learning test—revised. Clin Neuropsychol 13:348–358CrossRefPubMedGoogle Scholar
  35. Shawcross D, Jalan R (2005) The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell Mol Life Sci 62:2295–2304CrossRefPubMedGoogle Scholar
  36. Shibata S, Kyuwa S, Lee SK, Toyoda Y, Goto N (1994) Apoptosis induced in mouse hepatitis virus-infected cells by a virus-specific CD8+ cytotoxic T-lymphocyte clone. J Virol 68:7540–7545PubMedPubMedCentralGoogle Scholar
  37. Soogoor M, Lynn HS, Donfield SM, Gomperts E, Bell TS, Daar ES et al (2006) Hepatitis C virus infection and neurocognitive function. Neurology 67:1482–1485CrossRefPubMedGoogle Scholar
  38. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662CrossRefGoogle Scholar
  39. Thein H, Maruff P, Krahn M, Kaldor J, Koorey D, Brew B et al (2007) Improved cognitive function as a consequence of hepatitis C virus treatment. HIV Med 8:520–528CrossRefPubMedGoogle Scholar
  40. Tully DC, Hjerrild S, Leutscher PD, Renvillard SG, Ogilvie CB, Bean DJ et al (2016) Deep sequencing of hepatitis C virus reveals genetic compartmentalization in cerebrospinal fluid from cognitively impaired patients. Liver Int 36:1418–1424CrossRefPubMedGoogle Scholar
  41. Wechsler D (1997) Wechsler adult intelligence scale, 3rd edn. The Psychological Corporation, San AntonioGoogle Scholar
  42. Weissenborn K, Krause J, Bokemeyer M, Hecker H, Schüler A, Ennen JC et al (2004) Hepatitis C virus infection affects the brain—evidence from psychometric studies and magnetic resonance spectroscopy. J Hepatol 41:845–851CrossRefPubMedGoogle Scholar
  43. Zeuzem S (2008) Interferon-based therapy for chronic hepatitis C: current and future perspectives. Nat Clin Pract Gastroenterol Hepatol 5:610–622CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2017

Authors and Affiliations

  • Taylor Kuhn
    • 1
    • 2
    Email author
  • Philip Sayegh
    • 3
  • Jacob D. Jones
    • 1
    • 2
  • Jason Smith
    • 2
  • Manoj K. Sarma
    • 1
  • A. Ragin
    • 1
  • Elyse J. Singer
    • 4
  • M. Albert Thomas
    • 1
  • April D. Thames
    • 1
  • Steven A. Castellon
    • 1
    • 2
  • Charles H. Hinkin
    • 1
    • 2
  1. 1.Department of Psychiatry and Biobehavioral Sciences, David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesUSA
  2. 2.Psychology ServiceVeterans Administration (VA) Greater Los Angeles Healthcare SystemLos AngelesUSA
  3. 3.Department of PsychologyUCLALos AngelesUSA
  4. 4.Department of Neurology, David Geffen School of MedicineUCLALos AngelesUSA

Personalised recommendations