Advertisement

Journal of NeuroVirology

, Volume 23, Issue 3, pp 474–482 | Cite as

Peripheral blood lymphocyte HIV DNA levels correlate with HIV associated neurocognitive disorders in Nigeria

  • Jibreel Jumare
  • Sara Sunshine
  • Hayat Ahmed
  • Samer S. El-Kamary
  • Laurence Magder
  • Laura Hungerford
  • Tricia Burdo
  • Lindsay M. Eyzaguirre
  • Anya Umlauf
  • Mariana Cherner
  • Alash’le Abimiku
  • Man Charurat
  • Jonathan Z. Li
  • William A. Blattner
  • Walter RoyalIIIEmail author
Article

Abstract

Mononuclear cells play key roles in the pathogenic mechanisms leading to HIV-associated neurocognitive disorders (HANDs). We examined the association between HIV DNA within peripheral blood mononuclear cell (PBMC) subsets and HAND in Nigeria. PBMCs were collected at baseline from 36 antiretroviral naive participants. CD14+ cells and T&B lymphocyte fractions were isolated by, respectively, positive and negative magnetic bead separation. Total HIV DNA within CD14+ and T&B cells were separately quantified using real-time PCR assay targeting HIV LTR-gag and cell input numbers determined by CCR5 copies/sample. Utilizing demographically adjusted T scores obtained from a 7-domain neuropsychological test battery, cognitive status was determined by the global deficit score (GDS) approach, with a GDS of ≥0.5 indicating cognitive impairment. In a linear regression adjusting for plasma HIV RNA, CD4 and lymphocyte count, Beck’s depression score, and years of education, there was 0.04 lower log10 HIV DNA copies within T&B lymphocytes per unit increase in global T score (p = 0.02). Adjusting for the same variables in a logistic regression, the odds of cognitive impairment were 6.2 times greater per log10 increase in HIV DNA within T&B lymphocytes (p = 0.048). The association between cognitive impairment and HIV DNA within CD14+ monocytes did not reach statistical significance. In this pretreatment cohort with mild cognitive dysfunction, we found a strong association between levels of HIV DNA within the lymphocyte subset and HAND independent of plasma HIV RNA. These findings likely reflect the neurologic impact of a larger HIV reservoir and active viral replication.

Keywords

HIV DNA Mononuclear cells Neurocognitive disorders Nigeria 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Financial support

This work was supported by National Institutes of Health grant no. R01 MH086356 (to William A. Blattner and Walter Royal, III) and by the National Institutes of Health Fogarty/AIDS International Training and Research Program grant no. 2D43TW001041-14 (training support to Jibreel Jumare).

References

  1. Akolo C, Royal W III, Cherner M, Okwuasaba K, Eyzaguirre L, Adebiyi R, Umlauf A, Hendrix T, Johnson J, Abimiku AE, Blattner W (2014) Neurocognitive impairment associated with predominantly early stage HIV infection in Abuja, Nigeria. J Neurovirol 20(4):380–387CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beck AT, Steer RA, Brown GK (1996) Beck depression inventory. Psychological Corporation, San AntonioGoogle Scholar
  3. Blackstone K, Moore DJ, Franklin DR, Clifford DB, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, Ellis RJ, Atkinson JH, Grant I, Heaton RK (2012) Defining neurocognitive impairment in HIV: deficit scores versus clinical ratings. Clin Neuropsychol 26(6):894–908CrossRefPubMedGoogle Scholar
  4. Burdo TH, Lackner A, Williams KC (2013) Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev 254(1):102–113CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buzon MJ, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, Gatell JM, Domingo P, Paredes R, Sharkey M, Palmer S, Stevenson M, Clotet B, Blanco J, Martinez-Picado J (2010) HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 16(4):460–465CrossRefPubMedGoogle Scholar
  6. Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, Heaton RK (2004) Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol 26(3):307–319CrossRefPubMedGoogle Scholar
  7. Chen MF, Gill AJ, Kolson DL (2014) Neuropathogenesis of HIV-associated neurocognitive disorders: roles for immune activation, HIV blipping and viral tropism. Curr Opin HIV AIDS 9(6):559–564CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS (1998) Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci U S A 95(15):8869–8873CrossRefPubMedPubMedCentralGoogle Scholar
  9. Crowe SM, Sonza S (2000) HIV-1 can be recovered from a variety of cells including peripheral blood monocytes of patients receiving highly active antiretroviral therapy: a further obstacle to eradication. J Leukoc Biol 68(3):345–350PubMedGoogle Scholar
  10. Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, Okamoto Y, Casazza JP, Kuruppu J, Kunstman K, Wolinsky S, Grossman Z, Dybul M, Oxenius A, Price DA, Connors M, Koup RA (2002) HIV preferentially infects HIV-specific CD4+ T cells. Nature 417(6884):95–98CrossRefPubMedGoogle Scholar
  11. Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, Lewin SR, Gorry PR, Jaworowski A, Greene WC, Sonza S, Crowe SM (2007) The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol 178(10):6581–6589CrossRefPubMedGoogle Scholar
  12. Garbuglia AR, Calcaterra S, D'Offizi G, Topino S, Narciso P, Lillo F, Girardi E, Capobianchi MR (2004) HIV-1 DNA burden dynamics in CD4 T cells and monocytes in patients undergoing a transient therapy interruption. J Med Virol 74(3):373–381CrossRefPubMedGoogle Scholar
  13. Gibellini D, Borderi M, De Crignis E, Cicola R, Cimatti L, Vitone F, Chiodo F, Re MC (2008) HIV-1 DNA load analysis in peripheral blood lymphocytes and monocytes from naive and HAART-treated individuals. J Infect 56(3):219–225CrossRefPubMedGoogle Scholar
  14. Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5(1):69–81CrossRefPubMedGoogle Scholar
  15. Graf EH, O'Doherty U (2013) Quantitation of integrated proviral DNA in viral reservoirs. Curr Opin HIV AIDS 8(2):100–105CrossRefPubMedGoogle Scholar
  16. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75(23):2087–2096CrossRefPubMedPubMedCentralGoogle Scholar
  17. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP, Collier AC, Marra CM, Morgello S, Mindt MR, Taylor MJ, Marcotte TD, Atkinson JH, Wolfson T, Gelman BB, McArthur JC, Simpson DM, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17(1):3–16CrossRefPubMedGoogle Scholar
  18. Ibanez A, Puig T, Elias J, Clotet B, Ruiz L, Martinez MA (1999) Quantification of integrated and total HIV-1 DNA after long-term highly active antiretroviral therapy in HIV-1-infected patients. AIDS 13(9):1045–1049CrossRefPubMedGoogle Scholar
  19. Li JZ, Etemad B, Ahmed H, Aga E, Bosch RJ, Mellors JW, Kuritzkes DR, Lederman MM, Para M, Gandhi RT (2016) The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS 30(3):343–353PubMedPubMedCentralGoogle Scholar
  20. Livingstone WJ, Moore M, Innes D, Bell JE, Simmonds P (1996) Frequent infection of peripheral blood CD8-positive T-lymphocytes with HIV-1. Edinburgh heterosexual transmission study group. Lancet 348(9028):649–654CrossRefPubMedGoogle Scholar
  21. Malnati MS, Scarlatti G, Gatto F, Salvatori F, Cassina G, Rutigliano T, Volpi R, Lusso P (2008) A universal real-time PCR assay for the quantification of group-M HIV-1 proviral load. Nat Protoc 3(7):1240–1248CrossRefPubMedGoogle Scholar
  22. Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, Kingsley LA (1996) Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272(5265):1167–1170CrossRefPubMedGoogle Scholar
  23. Mexas AM, Graf EH, Pace MJ, Yu JJ, Papasavvas E, Azzoni L, Busch MP, Di Mascio M, Foulkes AS, Migueles SA, Montaner LJ, O’Doherty U (2012) Concurrent measures of Total and integrated HIV DNA monitor reservoirs and ongoing replication in eradication trials. AIDS (London, England) 26(18):2295–2306CrossRefGoogle Scholar
  24. Moir S, Lapointe R, Malaspina A, Ostrowski M, Cole CE, Chun TW, Adelsberger J, Baseler M, Hwu P, Fauci AS (1999) CD40-mediated induction of CD4 and CXCR4 on B lymphocytes correlates with restricted susceptibility to human immunodeficiency virus type 1 infection: potential role of B lymphocytes as a viral reservoir. J Virol 73(10):7972–7980PubMedPubMedCentralGoogle Scholar
  25. Moir S, Malaspina A, Li Y, Chun TW, Lowe T, Adelsberger J, Baseler M, Ehler LA, Liu S, Davey RT Jr, Mican JA, Fauci AS (2000) B cells of HIV-1-infected patients bind virions through CD21-complement interactions and transmit infectious virus to activated T cells. J Exp Med 192(5):637–646CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nickle DC, Jensen MA, Shriner D, Brodie SJ, Frenkel LM, Mittler JE, Mullins JI (2003) Evolutionary indicators of human immunodeficiency virus type 1 reservoirs and compartments. J Virol 77(9):5540–5546CrossRefPubMedPubMedCentralGoogle Scholar
  27. Oliveira MFD, Murrell B, Pérez-Santiago J, Vargas M, Ellis RJ, Letendre S, Grant I, Smith DM, Woods SP, Gianella S (2015) Circulating HIV DNA correlates with neurocognitive impairment in older HIV-infected adults on suppressive ART. Sci Rep 5:17094CrossRefPubMedPubMedCentralGoogle Scholar
  28. Palmer S, Josefsson L, Coffin JM (2011) HIV reservoirs and the possibility of a cure for HIV infection. J Intern Med 270(6):550–560CrossRefPubMedGoogle Scholar
  29. Pang S, Koyanagi Y, Miles S, Wiley C, Vinters HV, Chen IS (1990) High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 343(6253):85–89CrossRefPubMedGoogle Scholar
  30. Price RW, Spudich SS, Peterson J, Joseph S, Fuchs D, Zetterberg H, Gisslen M, Swanstrom R (2014) Evolving character of chronic central nervous system HIV infection. Semin Neurol 34(1):7–13CrossRefPubMedPubMedCentralGoogle Scholar
  31. Psallidopoulos MC, Schnittman SM, Thompson LM 3rd, Baseler M, Fauci AS, Lane HC, Salzman NP (1989) Integrated proviral human immunodeficiency virus type 1 is present in CD4+ peripheral blood lymphocytes in healthy seropositive individuals. J Virol 63(11):4626–4631PubMedPubMedCentralGoogle Scholar
  32. Rouzioux C, Hubert JB, Burgard M, Deveau C, Goujard C, Bary M, Sereni D, Viard JP, Delfraissy JF, Meyer L (2005) Early levels of HIV-1 DNA in peripheral blood mononuclear cells are predictive of disease progression independently of HIV-1 RNA levels and CD4+ T cell counts. J Infect Dis 192(1):46–55CrossRefPubMedGoogle Scholar
  33. Royal W 3rd, Cherner M, Burdo TH, Umlauf A, Letendre SL, Jumare J, Abimiku A, Alabi P, Alkali N, Bwala S, Okwuasaba K, Eyzaguirre LM, Akolo C, Guo M, Williams KC, Blattner WA (2016) Associations between cognition, gender and monocyte activation among HIV infected individuals in Nigeria. PLoS One 11(2):e0147182CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R (2011) HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog 7(10):e1002286Google Scholar
  35. Shiramizu B, Gartner S, Williams A, Shikuma C, Ratto-Kim S, Watters M, Aguon J, Valcour V (2005) Circulating proviral HIV DNA and HIV-associated dementia. AIDS 19(1):45–52CrossRefPubMedPubMedCentralGoogle Scholar
  36. Shiramizu B, Ratto-Kim S, Sithinamsuwan P, Nidhinandana S, Thitivichianlert S, Watt G, deSouza M, Chuenchitra T, Sukwit S, Chitpatima S, Robertson K, Paul R, Shikuma C, Valcour V (2006) HIV DNA and dementia in treatment-naive HIV-1-infected individuals in Bangkok, Thailand. Int J Med Sci 4(1):13–18PubMedPubMedCentralGoogle Scholar
  37. Shiramizu B, Williams AE, Shikuma C, Valcour V (2009) Amount of HIV DNA in peripheral blood mononuclear cells is proportional to the severity of HIV-1-associated neurocognitive disorders. J Neuropsychiatry Clin Neurosci 21(1):68–74CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sloan RD, Wainberg MA (2011) The role of unintegrated DNA in HIV infection. Retrovirology 8(52):1742–4690Google Scholar
  39. Strain MC, Gunthard HF, Havlir DV, Ignacio CC, Smith DM, Leigh-Brown AJ, Macaranas TR, Lam RY, Daly OA, Fischer M, Opravil M, Levine H, Bacheler L, Spina CA, Richman DD, Wong JK (2003) Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: intrinsic stability predicts lifelong persistence. Proc Natl Acad Sci U S A 100(8):4819–4824CrossRefPubMedPubMedCentralGoogle Scholar
  40. Valcour VG, Ananworanich J, Agsalda M, Sailasuta N, Chalermchai T, Schuetz A, Shikuma C, Liang CY, Jirajariyavej S, Sithinamsuwan P, Tipsuk S, Clifford DB, Paul R, Fletcher JL, Marovich MA, Slike BM, DeGruttola V, Shiramizu B (2013) HIV DNA reservoir increases risk for cognitive disorders in cART-naive patients. PLoS One 8(7):e70164CrossRefPubMedPubMedCentralGoogle Scholar
  41. Valcour VG, Shiramizu BT, Sithinamsuwan P, Nidhinandana S, Ratto-Kim S, Ananworanich J, Siangphoe U, Kim JH, de Souza M, Degruttola V, Paul RH, Shikuma CM (2009) HIV DNA and cognition in a Thai longitudinal HAART initiation cohort: the SEARCH 001 cohort study. Neurology 72(11):992–998CrossRefPubMedPubMedCentralGoogle Scholar
  42. Williams JP, Hurst J, Stohr W, Robinson N, Brown H, Fisher M, Kinloch S, Cooper D, Schechter M, Tambussi G, Fidler S, Carrington M, Babiker A, Weber J, Koelsch KK, Kelleher AD, Phillips RE, Frater J (2014) HIV-1 DNA predicts disease progression and post-treatment virological control. elife 12(3):03821Google Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2017

Authors and Affiliations

  • Jibreel Jumare
    • 1
  • Sara Sunshine
    • 2
  • Hayat Ahmed
    • 2
  • Samer S. El-Kamary
    • 1
  • Laurence Magder
    • 1
  • Laura Hungerford
    • 1
  • Tricia Burdo
    • 3
  • Lindsay M. Eyzaguirre
    • 1
  • Anya Umlauf
    • 4
  • Mariana Cherner
    • 4
  • Alash’le Abimiku
    • 1
  • Man Charurat
    • 1
  • Jonathan Z. Li
    • 2
  • William A. Blattner
    • 1
  • Walter RoyalIII
    • 1
    Email author
  1. 1.University of Maryland School of MedicineBaltimoreUSA
  2. 2.Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Temple University School of MedicinePhiladelphiaUSA
  4. 4.School of MedicineUniversity of California San DiegoSan DiegoUSA

Personalised recommendations