Journal of NeuroVirology

, Volume 23, Issue 3, pp 441–450 | Cite as

Cocaine dependence does not contribute substantially to white matter abnormalities in HIV infection

  • Daniella M. Cordero
  • Sheri L. Towe
  • Nan-kuei Chen
  • Kevin R. Robertson
  • David J. Madden
  • Scott A. Huettel
  • Christina S. MeadeEmail author


This study investigated the association of HIV infection and cocaine dependence with cerebral white matter integrity using diffusion tensor imaging (DTI). One hundred thirty-five participants stratified by HIV and cocaine status (26 HIV+/COC+, 37 HIV+/COC−, 37 HIV−/COC+, and 35 HIV−/COC−) completed a comprehensive substance abuse assessment, neuropsychological testing, and MRI with DTI. Among HIV+ participants, all were receiving HIV care and 46% had an AIDS diagnosis. All COC+ participants were current users and met criteria for cocaine use disorder. We used tract-based spatial statistics (TBSS) to assess the relation of HIV and cocaine to fractional anisotropy (FA) and mean diffusivity (MD). In whole-brain analyses, HIV+ participants had significantly reduced FA and increased MD compared to HIV− participants. The relation of HIV and FA was widespread throughout the brain, whereas the HIV-related MD effects were restricted to the corpus callosum and thalamus. There were no significant cocaine or HIV-by-cocaine effects. These DTI metrics correlated significantly with duration of HIV disease, nadir CD4+ cell count, and AIDS diagnosis, as well as some measures of neuropsychological functioning. These results suggest that HIV is related to white matter integrity throughout the brain, and that HIV-related effects are more pronounced with increasing duration of infection and greater immune compromise. We found no evidence for independent effects of cocaine dependence on white matter integrity, and cocaine dependence did not appear to exacerbate the effects of HIV.


HIV infection White matter Diffusion tensor imaging (DTI) Magnetic resonance imaging (MRI) Cocaine Neurocognitive function 



This study was funded by grants K23-DA028660, R21-DA036450, T32-AI007392, R01-AG039684, and R03-033828-02S1 from the U.S. National Institutes of Health. We are grateful to the UNC Center for AIDS Research (P30-AI50410) for its assistance with patient recruitment. The NIH had no further role in study design, data collection, analysis and interpretation of data, writing the report, or in the decision to submit the paper for publication. We thank all the individuals who participated in this study.

CSM designed the original project and secured grant funding; DMC, CSM, SLT, SAH, and NC conceptualized the current study; DMC, CSM, and SLT conducted the analyses, with guidance from DJM, NC, and SAH; DMC and CSM drafted the manuscript and SLT wrote additional sections; and all authors contributed to and have approved the final manuscript.

Compliance with ethical standards

Study procedures were approved by the institutional review boards at Duke University Health System and University of North Carolina at Chapel Hill.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baum MK, Rafie C, Lai S, Sales S, Page B, Campa A (2009) Crack-cocaine use accelerates HIV disease progression in a cohort of HIV-positive drug users. J Acquir Immune Defic Syndr 50:93–99CrossRefPubMedGoogle Scholar
  3. Benton A, Hamsher K, Sivan A (1983) Multilingual aphasia examination, 3rd edn. Iowa City, IA, AJA AssociatesGoogle Scholar
  4. Bing EG, Burnam MA, Longshore D, Fleishman JA, Sherbourne CD, London AS, Turner BJ, Eggan F, Beckman R, Vitiello B, Morton SC, Orlando M, Bozzette SA, Ortiz-Barron L, Shapiro M (2001) Psychiatric disorders and drug use among human immunodeficiency virus-infected adults in the United States. Arch Gen Psychiatry 58:721–728CrossRefPubMedGoogle Scholar
  5. Bosch B, Arenaza-Urquijo EM, Rami L, Sala-Llonch R, Junqué C, Solé-Padullés C, Peña-Gómez C, Bargalló N, Molinuevo JL, Bartrés-Faz D (2012) Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging 33:61–74CrossRefPubMedGoogle Scholar
  6. Brandt J, Benedict RHB (2001) Hopkins verbal learning test—revised professional manual. Psychological Assessment Resources, Inc, Lutz, FLGoogle Scholar
  7. Chang L, Wong V, Nakama H, Watters M, Ramones D, Miller EN, Cloak C, Ernst T (2008) Greater than age-related changes in brain diffusion of HIV patients after 1 year. J NeuroImmune Pharmacol 3:265–274CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chanraud S, Zahr N, Sullivan E, Pfefferbaum A (2010) MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychol Rev 20:209–225CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen Y, An H, Zhu H, Stone T, Smith JK, Hall C, Bullitt E, Shen D, Lin W (2009) White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. NeuroImage 47:1154–1162CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cohen RA, Harezlak J, Schifitto G, Hana G, Clark U, Gongvatana A, Paul R, Taylor M, Thompson P, Alger J, Brown M, Zhong J, Campbell T, Singer E, Daar E, McMahon D, Tso Y, Yiannoutsos CT, Navia B (2010) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16:25–32CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cook JA, Burke-Miller JK, Cohen MH, Cook RL, Vlahov D, Wilson TE, Golub ET, Schwartz RM, Howard AA, Ponath C, Plankey MW, Levine AM, Grey DD (2008) Crack cocaine, disease progression, and mortality in a multicenter cohort of HIV-1 positive women. AIDS 22:1355–1363CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dawes S, Suarez P, Casey CY, Cherner M, Marcotte TD, Letendre S, Grant I, Heaton RK (2008) Variable patterns of neuropsychological performance in HIV-1 infection. J Clin Exp Neuropsychol 30:613–626CrossRefPubMedPubMedCentralGoogle Scholar
  13. Diehr MC, Cherner M, Wolfson TJ, Miller SW, Grant I, Heaton RK (2003) The 50 and 100-item short forms of the Paced Auditory Serial Addition Task (PASAT): demographically corrected norms and comparisons with the full PASAT in normal and clinical samples. J Clin Exp Neuropsychol 25:571–585CrossRefPubMedGoogle Scholar
  14. Du H, Wu Y, Ochs R, Edelman RR, Epstein LG, McArthur J, Ragin AB (2012) A comparative evaluation of quantitative neuroimaging measurements of brain status in HIV infection. Psychiatry Res Neuroimaging 203:95–99CrossRefPubMedGoogle Scholar
  15. Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, Collier AC, Gelman B, McArthur J, Morgello S, McCutchan JA, Grant I (2011) Nadir CD4 is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS 25:1747–1751CrossRefPubMedGoogle Scholar
  16. Gandhi N, Saiyed Z, Napuri J, Samikkannu T, Reddy PB, Agudelo M, Khatavkar P, Saxena S, Nair MN (2010) Interactive role of human immunodeficiency virus type 1 (HIV-1) clade-specific Tat protein and cocaine in blood-brain barrier dysfunction: implications for HIV-1-associated neurocognitive disorder. J Neurovirol 16:294–305CrossRefPubMedGoogle Scholar
  17. Garin Escriva N, Velasco Muñoz C, Thomas De Pourcq J, Lopez Garcia B, Maria Haro Abad J, Antonia Mangues Bafalluy M, Trilla Garcia A (2014) Recreational drugs and HIV in Europe: current use of recreational drugs and principal HIV guidelines related recommendations. J Int AIDS Soc 17:19831CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gaskill PJ, Calderon TM, Luers AJ, Eugenin EA, Javitch JA, Berman JW (2009) Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol 175:1148–1159CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gianaros PJ, Marsland AL, Sheu LK, Erickson KI, Verstynen TD (2013) Inflammatory pathways link socioeconomic inequalities to white matter architecture. Cereb Cortex 23:2058–2071CrossRefPubMedGoogle Scholar
  20. Golden CJ (1978) Stroop color and word test. Chicago, IL, StoeltingGoogle Scholar
  21. Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL (2006) Symmetric Atlasing and model based segmentation: an application to the hippocampus in older adults. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention – MICCAI 2006. Springer, Berlin Heidelberg, pp 58–66CrossRefGoogle Scholar
  22. Gray F, Scaravilli F, Everall I, Chretien F, An S, Boche D, Adle-Biassette H, Wingertsmann L, Durigon M, Hurtrel B, Chiodi F, Belli J, Lantos P (1996) Neuropathology of early HIV-1 infection. Brain Pathol 6:1–12CrossRefPubMedGoogle Scholar
  23. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–2096CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hoare J, Fouche JP, Spottiswoode B, Sorsdahl K, Combrinck M, Stein DJ, Paul RH, Joska JA (2011) White-matter damage in Clade C HIV-positive subjects: a diffusion tensor imaging study. The Journal of Neuropsychiatry and Clinical Neurosciences 23:308–315CrossRefPubMedGoogle Scholar
  25. Hua X, Boyle CP, Harezlak J, Tate DF, Yiannoutsos CT, Cohen R, Schifitto G, Gongvatana A, Zhong J, Zhu T, Taylor MJ, Campbell TB, Daar ES, Alger JR, Singer E, Buchthal S, Toga AW, Navia B, Thompson PM (2013) Disrupted cerebral metabolite levels and lower nadir CD4+ counts are linked to brain volume deficits in 210 HIV-infected patients on stable treatmentpatients on stable treatment. NeuroImage: Clinical 3:132–142CrossRefGoogle Scholar
  26. Jernigan TL, Archibald SL, Fennema-Notestine C, Taylor MJ, Theilmann RJ, Julaton MD, Notestine RJ, Wolfson T, Letendre SL, Ellis RJ, Heaton RK, Gamst AC, Franklin DR Jr, Clifford DB, Collier AC, Gelman BB, Marra C, McArthur JC, McCutchan JA, Morgello S, Simpson DM, Grant I (2011) Clinical factors related to brain structure in HIV: the CHARTER study. J Neurovirol 17:248–257CrossRefPubMedPubMedCentralGoogle Scholar
  27. Johansen-Berg H, Behrens TE (2013) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy 2edn. Elsevier, San Diego, CAGoogle Scholar
  28. Kaag AM, van Wingen GA, Caan MWA, Homberg JR, van den Brink W, Reneman L (2016) White matter alterations in cocaine users are negatively related to the number of additionally (ab)used substances. Addict Biol.Google Scholar
  29. Kelly C, Zuo XN, Gotimer K, Cox CL, Lynch L, Brock D, Imperati D, Garavan H, Rotrosen J, Castellanos FX, Milham MP (2011) Reduced interhemispheric resting state functional connectivity in cocaine addiction. Biol Psychiatry 69:684–692CrossRefPubMedPubMedCentralGoogle Scholar
  30. Klove H (1963) Grooved pegboard. Lafayette, IN, Lafayette InstrumentsGoogle Scholar
  31. Lane SD, Steinberg JL, Ma L, Hasan KM, Kramer LA, Zuniga EA, Narayana PA, Moeller FG (2010) Diffusion tensor imaging and decision making in cocaine dependence. PLoS One 5:e11591CrossRefPubMedPubMedCentralGoogle Scholar
  32. Le Bihan D, Johansen-Berg H (2012) Diffusion MRI at 25: exploring brain tissue structure and function. NeuroImage 61:324–341CrossRefPubMedGoogle Scholar
  33. Leonard JA, Mackey AP, Finn AS, Gabrieli JDE (2015) Differential effects of socioeconomic status on working and procedural memory systems. Front Hum Neurosci 9Google Scholar
  34. Lim KO, Choi SJ, Pomara N, Wolkin A, Rotrosen JP (2002) Reduced frontal white matter integrity in cocaine dependence: a controlled diffusion tensor imaging study. Biol Psychiatry 51:890–895CrossRefPubMedGoogle Scholar
  35. Lim KO, Wozniak JR, Mueller BA, Franc DT, Specker SM, Rodriguez CP, Silverman AB, Rotrosen JP (2008) Brain macrostructural and microstructural abnormalities in cocaine dependence. Drug Alcohol Depend 92:164–172CrossRefPubMedGoogle Scholar
  36. Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL (2010) HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J NeuroImmune Pharmacol 5:294–309CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ma L, Hasan KM, Steinberg JL, Narayana PA, Lane SD, Zuniga EA, Kramer LA, Moeller FG (2009) Diffusion tensor imaging in cocaine dependence: regional effects of cocaine on corpus callosum and effect of cocaine administration route. Drug Alcohol Depend 104:262–267CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ma L, Steinberg JL, Keyser-Marcus L, Ramesh D, Narayana PA, Merchant RE, Moeller FG, Cifu DX (2015) Altered white matter in cocaine-dependent subjects with traumatic brain injury: a diffusion tensor imaging study. Drug Alcohol Depend 151:128–134CrossRefPubMedPubMedCentralGoogle Scholar
  39. Madden DJ, Bennett IJ, Burzynska A, Potter GG, N-k C, Song AW (2012b) Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta (BBA) - Mol Basis Dis 1822:386–400CrossRefGoogle Scholar
  40. Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song AW (2012a) Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta 1822:386–400CrossRefPubMedGoogle Scholar
  41. Meade CS, Conn NA, Skalski LM, Safren SA (2011) Neurocognitive impairment and medication adherence in HIV patients with and without cocaine dependence. J Behav Med 34:128–138CrossRefPubMedGoogle Scholar
  42. Meade CS, Towe SL, Skalski LM, Robertson KR (2015) Independent effects of HIV infection and cocaine dependence on neurocognitive impairment in a community sample living in the southern United States. Drug Alcohol Depend 149:128–135CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mimiaga MJ, Reisner SL, Grasso C, Crane HM, Safren SA, Kitahata MM, Schumacher JE, Mathews WC, Mayer KH (2013) Substance use among HIV-infected patients engaged in primary care in the United States: findings from the Centers for AIDS Research Network of Integrated Clinical Systems cohort. Am J Public Health 103:1457–1467CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mocchetti I, Bachis A, Esposito G, Turner SR, Taraballi F, Tasciotti E, Paige M, Avdoshina V (2014) Human immunodeficiency virus-associated dementia: a link between accumulation of viral proteins and neuronal degeneration. Current trends in neurology 8:71–85PubMedPubMedCentralGoogle Scholar
  45. Moeller FG, Hasan KM, Steinberg JL, Kramer LA, Dougherty DM, Santos RM, Valdes I, Swann AC, Barratt ES, Narayana PA (2005) Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects: diffusion tensor imaging. Neuropsychopharmacology 30:610–617CrossRefPubMedGoogle Scholar
  46. Moeller FG, Hasan KM, Steinberg JL, Kramer LA, Valdes I, Lai LY, Swann AC, Narayana PA (2007) Diffusion tensor imaging eigenvalues: preliminary evidence for altered myelin in cocaine dependence. Psychiatry Res Neuroimaging 154:253–258CrossRefPubMedGoogle Scholar
  47. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta J (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 40:570–582CrossRefPubMedPubMedCentralGoogle Scholar
  48. Müller-Oehring EM, Schulte T, Rosenbloom MJ, Pfefferbaum A, Sullivan EV (2010) Callosal degradation in HIV-1 infection predicts hierarchical perception: a DTI study. Neuropsychologia 48:1133–1143CrossRefPubMedGoogle Scholar
  49. Munoz-Moreno JA, Fumaz CR, Ferrer MJ, Prats A, Negredo E, Garolera M, Perez-Alvarez N, Molto J, Gomez G, Clotet B (2008) Nadir CD4 cell count predicts neurocognitive impairment in HIV-infected patients. AIDS Res Hum Retrovir 24:1301–1307CrossRefPubMedGoogle Scholar
  50. Nath A (2010) Human immunodeficiency virus-associated neurocognitive disorder: pathophysiology in relation to drug addiction. Annals NY Academy of Sciences 1187:122–128CrossRefGoogle Scholar
  51. Nath A, Maragos WF, Avison MJ, Schmitt FA, Berger JR (2001) Acceleration of HIV dementia with methamphetamine and cocaine. J Neurovirol 7:66–71CrossRefPubMedGoogle Scholar
  52. Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clinical features. Ann Neurol 19:517–524CrossRefPubMedGoogle Scholar
  53. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMedGoogle Scholar
  54. Noble K, Grieve S, Korgaonkar M, Engelhardt L, Griffith E, Williams L, Brickman A (2012) Hippocampal volume varies with educational attainment across the life-span. Front Hum Neurosci:6Google Scholar
  55. Noble KG, Korgaonkar MS, Grieve SM, Brickman AM (2013) Higher education is an age-independent predictor of white matter integrity and cognitive control in late adolescence. Dev Sci 16:653–664CrossRefPubMedPubMedCentralGoogle Scholar
  56. Oguz I, Farzinfar M, Matsui J, Budin F, Liu Z, Gerig G, Johnson HJ, Styner M (2014) DTIPrep: quality control of diffusion-weighted images. Frontiers in Neuroinformatics 8:4CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pence BW, Thielman NM, Whetten K, Ostermann J, Kumar V, Mugavero MJ (2008) Coping strategies and patterns of alcohol and drug use among HIV-infected patients in the United States Southeast. AIDS Patient Care STDs 22:869–877CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Sullivan EV (2009) Frontostriatal fiber bundle compromise in HIV infection without dementia. AIDS 23:1977–1985CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pomara N, Crandall DT, Choi SJ, Johnson G, Lim KO (2001) White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res Neuroimaging 106:15–24CrossRefPubMedGoogle Scholar
  60. Purohit V, Rapaka R, Shurtleff D (2011) Drugs of abuse, dopamine, and HIV-associated neurocognitive disorders/HIV-associated dementia. Mol Neurobiol 44:102–110CrossRefPubMedGoogle Scholar
  61. Rafie C, Campa A, Smith S, Huffman F, Newman F, Baum MK (2010) Cocaine reduces thymic endocrine function: another mechanism for accelerated HIV disease progression. AIDS Res Hum Retroviruses.Google Scholar
  62. Reitan RM, Wolfson D (1993) The Halstead-Reitan neuropsychological test battery: theory and clinical interpretation, 2nd edn. Neuropsycholgy Press Tucson, AZGoogle Scholar
  63. Romero MJ, Asensio S, Palau C, Sanchez A, Romero FJ (2010) Cocaine addiction: diffusion tensor imaging study of the inferior frontal and anterior cingulate white matter. Psychiatry Res Neuroimaging 181:57–63CrossRefPubMedGoogle Scholar
  64. Schouten J, Cinque P, Gisslen M, Reiss P, Portegies P (2011) HIV-1 infection and cognitive impairment in the cART era: a review. AIDS 25:561–575CrossRefPubMedGoogle Scholar
  65. Siconolfi DE, Halkitis PN, Barton SC, Kingdon MJ, Perez-Figueroa RE, Arias-Martinez V, Karpiak S, Brennan-Ing M (2013) Psychosocial and demographic correlates of drug use in a sample of HIV-positive adults ages 50 and older. Prev Sci 14:618–627CrossRefPubMedGoogle Scholar
  66. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155CrossRefPubMedGoogle Scholar
  67. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505CrossRefPubMedGoogle Scholar
  68. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Supplement 1):S208–S219CrossRefPubMedGoogle Scholar
  69. Spronk DB, van Wel JHP, Ramaekers JG, Verkes RJ (2013) Characterizing the cognitive effects of cocaine: a comprehensive review. Neurosci Biobehav Rev 37:1838–1859CrossRefPubMedGoogle Scholar
  70. Spudich S (2013) HIV and neurocognitive dysfunction. Curr HIV AIDS Rep 10:235–243CrossRefGoogle Scholar
  71. Stern RA, White T (2009) NAB digits forward/digits backward test: professional manual. Psychological Assessment Resources, Inc. (PAR), Lutz, FLGoogle Scholar
  72. Tang VM, Lang DJ, Giesbrecht CJ, Panenka WJ, Willi T, Procyshyn RM, Vila-Rodriguez F, Jenkins W, Lecomte T, Boyda HN, Aleksic A, MacEwan GW, Honer WG, Barr AM (2015) White matter deficits assessed by diffusion tensor imaging and cognitive dysfunction in psychostimulant users with comorbid human immunodeficiency virus infection. BMC Research Notes 8:1–15CrossRefGoogle Scholar
  73. Thurnher MM, Castillo M, Stadler A, Rieger A, Schmid B, Sundgren PC (2005) Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. Am J Neuroradiol 26:2275–2281PubMedGoogle Scholar
  74. Valcour V, Sithinamsuwan P, Letendre S, Ances B (2011) Pathogenesis of HIV in the central nervous system. Curr HIV AIDS Rep 8:54–61CrossRefGoogle Scholar
  75. Valcour V, Yee P, Williams AE, Shiramizu B, Watters M, Selnes O, Paul R, Shikuma C, Sacktor N (2006) Lowest ever CD4 lymphocyte count (CD4 nadir) as a predictor of current cognitive and neurological status in human immunodeficiency virus type 1 infection—The Hawaii Aging with HIV Cohort. J Neurovirol 12:387–391CrossRefPubMedGoogle Scholar
  76. Wang B, Liu Z, Liu J, Tang Z, Li H, Tian J (2016) Gray and white matter alterations in early HIV-infected patients: combined voxel-based morphometry and tract-based spatial statistics. J Magn Reson Imaging 43:1474–1483CrossRefPubMedGoogle Scholar
  77. Wright PW, Vaida FF, Fernández RJ, Rutlin J, Price RW, Lee E, Peterson J, Fuchs D, Shimony JS, Robertson KR, Walter R, Meyerhoff DJ, Spudich S, Ances BM (2015) Cerebral white matter integrity during primary HIV infection. AIDS 29:433–442CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wu Y, Storey P, Cohen BA, Epstein LG, Edelman RR, Ragin AB (2006) Diffusion alterations in corpus callosum of patients with HIV. Am J Neuroradiol 27:656–660PubMedPubMedCentralGoogle Scholar
  79. Zhu T, Zhong J, Hu R, Tivarus M, Ekholm S, Harezlak J, Ombao H, Navia B, Cohen R, Schifitto G (2013) Patterns of white matter injury in HIV infection after partial immune reconstitution: a DTI tract-based spatial statistics study. J Neurovirol 19:10–23CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2017

Authors and Affiliations

  • Daniella M. Cordero
    • 1
  • Sheri L. Towe
    • 1
    • 2
  • Nan-kuei Chen
    • 3
    • 4
  • Kevin R. Robertson
    • 5
  • David J. Madden
    • 2
    • 3
  • Scott A. Huettel
    • 6
    • 7
  • Christina S. Meade
    • 1
    • 2
    Email author
  1. 1.Duke Global Health InstituteDuke UniversityDurhamUSA
  2. 2.Department of Psychiatry & Behavioral SciencesDuke University School of MedicineDurhamUSA
  3. 3.Brain Imaging and Analysis CenterDuke University Medical CenterDurhamUSA
  4. 4.Department of RadiologyDuke University School of MedicineDurhamUSA
  5. 5.Department of Neurology, Physicians Office BuildingUniversity of North Carolina School of MedicineChapel HillUSA
  6. 6.Center for Cognitive NeuroscienceDuke UniversityDurhamUSA
  7. 7.Department of Psychology & NeuroscienceDuke UniversityDurhamUSA

Personalised recommendations