Advertisement

Journal of NeuroVirology

, Volume 22, Issue 6, pp 774–788 | Cite as

Exosome-associated release, uptake, and neurotoxicity of HIV-1 Tat protein

  • Pejman Rahimian
  • Johnny J. HeEmail author
Article

Abstract

HIV-1 Tat is an indispensible transactivator for HIV gene transcription and replication. It has been shown to exit cells as a free protein and enter neighboring cells or interact with surface receptors of neighboring cells to regulate gene expression and cell function. In this study, we report, for the first time, exosome-associated Tat release and uptake. Using a HIV-1 LTR-driven luciferase reporter-based cell assay and Western blotting or in combination with exosome inhibitor, OptiPrep gradient fractionation, and exosome depletion, we demonstrated significant presence of HIV-1 Tat in exosomes derived from Tat-expressing primary astrocytes, Tat-transfected U373.MG and 293T, and HIV-infected MT4. We further showed that exosome-associated Tat from Tat-expressing astrocytes was capable of causing neurite shortening and neuron death, further supporting that this new form of extracellular Tat is biologically active. Lastly, we constructed a Tat mutant deleted of its basic domain and determined the role of the basic domain in Tat trafficking into exosomes. Basic domain-deleted Tat exhibited no apparent effects on Tat trafficking into exosomes, while maintained its dominant-negative function in Tat-mediated LTR transactivation. Taken together, these results show a significant fraction of Tat is secreted and present in the form of exosomes and may contribute to the stability of extracellular Tat and broaden the spectrum of its target cells.

Keywords

HIV-1 Tat Exosomes Tat release Tat uptake Biological activity 

Notes

Acknowledgments

This work was supported in part by the grants NIH/NINDS R01NS094108 and NIH/NIMH R01MH092673 (to JJH) and T32AG20494 (to PR, PI: Dr. Meharvan Singh) from the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akabori K, Huang K, Treece BW, Jablin MS, Maranville B, Woll A, Nagle JF, Garcia AE, Tristram-Nagle S (2014) HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations. Biochim Biophys Acta 1838:3078–3087PubMedPubMedCentralCrossRefGoogle Scholar
  2. Albini A, Fontanini G, Masiello L, Tacchetti C, Bigini D, Luzzi P, Noonan DM, Stetler-Stevenson WG (1994) Angiogenic potential in vivo by Kaposi’s sarcoma cell-free supernatants and HIV-1 tat product: inhibition of KS-like lesions by tissue inhibitor of metalloproteinase-2. Aids 8:1237–1244PubMedCrossRefGoogle Scholar
  3. Albini A, Barillari G, Benelli R, Gallo RC, Ensoli B (1995) Angiogenic properties of human immunodeficiency virus type 1 Tat protein. Proc Natl Acad Sci U S A 92:4838–4842PubMedPubMedCentralCrossRefGoogle Scholar
  4. Albini A, Benelli R, Presta M, Rusnati M, Ziche M, Rubartelli A, Paglialunga G, Bussolino F, Noonan D (1996a) HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene 12:289–297PubMedGoogle Scholar
  5. Albini A, Soldi R, Giunciuglio D, Giraudo E, Benelli R, Primo L, Noonan D, Salio M, Camussi G, Rockl W, Bussolino F (1996b) The angiogenesis induced by HIV-1 tat protein is mediated by the Flk- 1/KDR receptor on vascular endothelial cells. Nat Med 2:1371–1375PubMedCrossRefGoogle Scholar
  6. Albini A, Benelli R, Giunciuglio D, Cai T, Mariani G, Ferrini S, Noonan DM (1998a) Identification of a novel domain of HIV tat involved in monocyte chemotaxis. J Biol Chem 273:15895–15900PubMedCrossRefGoogle Scholar
  7. Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AE, Alouani S, Wells TN, Mariani G, Rabin RL, Farber JM, Noonan DM (1998b) HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci U S A 95:13153–13158PubMedPubMedCentralCrossRefGoogle Scholar
  8. Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AEI, Alouani S, Wells TNC, Mariani G, Rabin RL, Farber JM, Noonan DM (1998c) HIV-1 tat protein mimicry of chemokines [In Process Citation]. Proc Natl Acad Sci U S A 95:13153–13158PubMedPubMedCentralCrossRefGoogle Scholar
  9. Aprea S, Del Valle L, Mameli G, Sawaya BE, Khalili K, Peruzzi F (2006) Tubulin-mediated binding of human immunodeficiency virus-1 Tat to the cytoskeleton causes proteasomal-dependent degradation of microtubule-associated protein 2 and neuronal damage. J Neurosci 26:4054–4062PubMedCrossRefGoogle Scholar
  10. Banks WA, Robinson SM, Nath A (2005) Permeability of the blood-brain barrier to HIV-1 Tat. Exp Neurol 193:218–227PubMedCrossRefGoogle Scholar
  11. Barbanti-Brodano G, Sampaolesi R, Campioni D, Lazzarin L, Altavilla G, Possati L, Masiello L, Benelli R, Albini A, Corallini A (1994) HIV-1 tat acts as a growth factor and induces angiogenic activity in BK virus/tat transgenic mice. Antibiot Chemother 46:88–101PubMedCrossRefGoogle Scholar
  12. Barton CH, Biggs TE, Mee TR, Mann DA (1996) The human immunodeficiency virus type 1 regulatory protein Tat inhibits interferon-induced iNos activity in a murine macrophage cell line. J Gen Virol 77(Pt 8):1643–1647PubMedCrossRefGoogle Scholar
  13. Bayer P, Kraft M, Ejchart A, Westendorp M, Frank R, Rosch P (1995) Structural studies of HIV-1 Tat protein. J Mol Biol 247:529–535PubMedGoogle Scholar
  14. Bellingham SA, Guo BB, Coleman BM, Hill AF (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 3:124PubMedPubMedCentralCrossRefGoogle Scholar
  15. Benelli R, Barbero A, Ferrini S, Scapini P, Cassatella M, Bussolino F, Tacchetti C, Noonan DM, Albini A (2000) Human immunodeficiency virus transactivator protein (Tat) stimulates chemotaxis, calcium mobilization, and activation of human polymorphonuclear leukocytes: implications for Tat-mediated pathogenesis. J Infect Dis 182:1643–1651PubMedCrossRefGoogle Scholar
  16. Blázquez C, Geelen MJ, Velasco G, Guzmán M (2001) The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett 489:149–153PubMedCrossRefGoogle Scholar
  17. Bonifaci N, Sitia R, Rubartelli A (1995) Nuclear translocation of an exogenous fusion protein containing HIV Tat requires unfolding. Aids 9:995–1000PubMedCrossRefGoogle Scholar
  18. Brailoiu E, Brailoiu GC, Mameli G, Dolei A, Sawaya BE, Dun NJ (2006) Acute exposure to ethanol potentiates human immunodeficiency virus type 1 Tat-induced Ca(2+) overload and neuronal death in cultured rat cortical neurons. J Neurovirol 12:17–24PubMedCrossRefGoogle Scholar
  19. Brake DA, Debouck C, Biesecker G (1990) Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat. J Cell Biol 111:1275–1281PubMedCrossRefGoogle Scholar
  20. Caldwell RL, Egan BS, Shepherd VL (2000) HIV-1 Tat represses transcription from the mannose receptor promoter. J Immunol 165:7035–7041PubMedCrossRefGoogle Scholar
  21. Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 338:21–30PubMedCrossRefGoogle Scholar
  22. Caporello E, Nath A, Slevin J, Galey D, Hamilton G, Williams L, Steiner JP, Haughey NJ (2006) The immunophilin ligand GPI1046 protects neurons from the lethal effects of the HIV-1 proteins gp120 and Tat by modulating endoplasmic reticulum calcium load. J Neurochem 98:146–155PubMedCrossRefGoogle Scholar
  23. Carroll R, Peterlin BM, Derse D (1992) Inhibition of human immunodeficiency virus type 1 Tat activity by coexpression of heterologous trans activators. J Virol 66:2000–2007PubMedPubMedCentralGoogle Scholar
  24. Chang HC, Samaniego F, Nair BC, Buonaguro L, Ensoli B (1997) HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. Aids 11:1421–1431PubMedCrossRefGoogle Scholar
  25. Chauhan A, Turchan J, Pocernich C, Bruce-Keller A, Roth S, Butterfield DA, Major EO, Nath A (2003) Intracellular human immunodeficiency virus Tat expression in astrocytes promotes astrocyte survival but induces potent neurotoxicity at distant sites via axonal transport. J Biol Chem 278:13512–13519PubMedCrossRefGoogle Scholar
  26. Chen LL, Frankel AD, Harder JL, Fawell S, Barsoum J, Pepinsky B (1995) Increased cellular uptake of the human immunodeficiency virus-1 Tat protein after modification with biotin. Anal Biochem 227:168–175PubMedCrossRefGoogle Scholar
  27. Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW Jr, Sowder RC 2nd, Barsov E, Hood BL, Fisher RJ, Nagashima K, Conrads TP, Veenstra TD, Lifson JD, Ott DE (2006) Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80:9039–9052PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chesebro B, Wehrly K, Nishio J, Perryman S (1992) Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol 66:6547–6554PubMedPubMedCentralGoogle Scholar
  29. Chowdhury M, Taylor JP, Tada H, Rappaport J, Wong-Staal F, Amini S, Khalili K (1990) Regulation of the human neurotropic virus promoter by JCV-T antigen and HIV-1 tat protein. Oncogene 5:1737–1742PubMedGoogle Scholar
  30. Chowdhury M, Taylor JP, Chang CF, Rappaport J, Khalili K (1992) Evidence that a sequence similar to TAR is important for induction of the JC virus late promoter by human immunodeficiency virus type 1 Tat. J Virol 66:7355–7361PubMedPubMedCentralGoogle Scholar
  31. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289PubMedCrossRefGoogle Scholar
  32. Columba Cabezas S, Federico M (2013) Sequences within RNA coding for HIV-1 Gag p17 are efficiently targeted to exosomes. Cell Microbiol 15:412–429PubMedCrossRefGoogle Scholar
  33. Corallini A, Campioni D, Rossi C, Albini A, Possati L, Rusnati M, Gazzanelli G, Benelli R, Masiello L, Sparacciari V, Presta M, Mannello F, Fontanini G, Barbanti-Brodano G (1996) Promotion of tumour metastases and induction of angiogenesis by native HIV-1 Tat protein from BK virus/tat transgenic mice. Aids 10:701–710PubMedCrossRefGoogle Scholar
  34. Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14:5338–5366PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cupp C, Taylor JP, Khalili K, Amini S (1993) Evidence for stimulation of the transforming growth factor beta 1 promoter by HIV-1 Tat in cells derived from CNS. Oncogene 8:2231–2236PubMedGoogle Scholar
  36. de Paulis A, De Palma R, Di Gioia L, Carfora M, Prevete N, Tosi G, Accolla RS, Marone G (2000) Tat protein is an HIV-1-encoded beta-chemokine homolog that promotes migration and up-regulates CCR3 expression on human Fc epsilon RI+ cells. J Immunol 165:7171–7179PubMedCrossRefGoogle Scholar
  37. Donnelly MR, Ciborowski P (2016) Proteomics, biomarkers, and HIV-1: a current perspective. Proteomics Clin Appl 10:110–125PubMedCrossRefGoogle Scholar
  38. Dunne AL, Siregar H, Mills J, Crowe SM (1994) HIV replication in chronically infected macrophages is not inhibited by the Tat inhibitors Ro-5-3335 and Ro-24-7429. J Leukoc Biol 56:369–373PubMedGoogle Scholar
  39. Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cena V, Gallego C, Comella JX (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75:991–1003PubMedCrossRefGoogle Scholar
  40. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345:84–86PubMedCrossRefGoogle Scholar
  41. Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67:277–287PubMedPubMedCentralGoogle Scholar
  42. Eugenin EA, King JE, Nath A, Calderon TM, Zukin RS, Bennett MV, Berman JW (2007) HIV-tat induces formation of an LRP–PSD-95– NMDAR–nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci U S A 104(9):3438–3443Google Scholar
  43. Fan Y, Zou W, Green LA, Kim BO, He JJ (2011) Activation of Egr-1 expression in astrocytes by HIV-1 Tat: new insights into astrocyte-mediated Tat neurotoxicity. J Neuroimmune Pharmacol 6:121–129PubMedCrossRefGoogle Scholar
  44. Fan Y, Timani KA, He JJ (2015) STAT3 and its phosphorylation are involved in HIV-1 Tat-induced transactivation of glial fibrillary acidic protein. Curr HIV Res 13:55–63PubMedCrossRefGoogle Scholar
  45. Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5, e158PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 91:664–668PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fraisier C, Abraham DA, van Oijen M, Cunliffe V, Irvine A, Craig R, Dzierzak EA (1998) Inhibition of Tat-mediated transactivation and HIV replication with Tat mutant and repressor domain fusion proteins. Gene Ther 5:946–954PubMedCrossRefGoogle Scholar
  48. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193PubMedCrossRefGoogle Scholar
  49. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840PubMedCrossRefGoogle Scholar
  50. Ganju RK, Munshi N, Nair BC, Liu ZY, Gill P, Groopman JE (1998) Human immunodeficiency virus tat modulates the Flk-1/KDR receptor, mitogen-activated protein kinases, and components of focal adhesion in Kaposi’s sarcoma cells. J Virol 72:6131–6137PubMedPubMedCentralGoogle Scholar
  51. Gibellini D, Zauli G, Re MC, Milani D, Furlini G, Caramelli E, Capitani S, La Placa M (1994) Recombinant human immunodeficiency virus type-1 (HIV-1) Tat protein sequentially up-regulates IL-6 and TGF-beta 1 mRNA expression and protein synthesis in peripheral blood monocytes. Br J Haematol 88:261–267PubMedCrossRefGoogle Scholar
  52. Green M, Ishino M, Loewenstein PM (1989) Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell 58:215–223PubMedCrossRefGoogle Scholar
  53. Hicks D, John D, Makova NZ, Henderson Z, Nalivaeva NN, Turner AJ (2011) Membrane targeting, shedding and protein interactions of brain acetylcholinesterase. J Neurochem 116:742–746PubMedCrossRefGoogle Scholar
  54. Hottiger MO, Nabel GJ (1998) Interaction of human immunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein. J Virol 72:8252–8256PubMedPubMedCentralGoogle Scholar
  55. Huang L, Bosch I, Hofmann W, Sodroski J, Pardee AB (1998) Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T- lymphotropic HIV-1 strains [In Process Citation]. J Virol 72:8952–8960PubMedPubMedCentralGoogle Scholar
  56. Hudson L, Liu J, Nath A, Jones M, Raghavan R, Narayan O, Male D, Everall I (2000) Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J Neurovirol 6:145–155PubMedCrossRefGoogle Scholar
  57. Hui L, Chen X, Haughey NJ, Geiger JD (2012) Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 4:243–252PubMedCrossRefGoogle Scholar
  58. Ito M, Ishida T, He L, Tanabe F, Rongge Y, Miyakawa Y, Terunuma H (1998) HIV type 1 Tat protein inhibits interleukin 12 production by human peripheral blood mononuclear cells. AIDS Res Hum Retrovir 14:845–849PubMedCrossRefGoogle Scholar
  59. Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Hasbun R, Nath A (2013) Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci U S A 110:13588–13593PubMedPubMedCentralCrossRefGoogle Scholar
  60. Johnstone R (1992) Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell Biol 70:179–190PubMedCrossRefGoogle Scholar
  61. Jones M, Olafson K, Del Bigio MR, Peeling J, Nath A (1998) Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol 57:563–570PubMedCrossRefGoogle Scholar
  62. Kamine J, Elangovan B, Subramanian T, Coleman D, Chinnadurai G (1996) Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216:357–366PubMedCrossRefGoogle Scholar
  63. Kerem A, Kronman C, Bar-Nun S, Shafferman A, Velan B (1993) Interrelations between assembly and secretion of recombinant human acetylcholinesterase. J Biol Chem 268:180–184PubMedGoogle Scholar
  64. Kim YS, Risser R (1993) TAR-independent transactivation of the murine cytomegalovirus major immediate-early promoter by the Tat protein. J Virol 67:239–248PubMedPubMedCentralGoogle Scholar
  65. Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ (2003) Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol 162:1693–1707PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288PubMedCrossRefGoogle Scholar
  67. Kulberg AJ (1990) Structural homology between HIV-1 tat protein and various human proteins. AIDS Res Hum Retroviruses 6:1059–1060PubMedCrossRefGoogle Scholar
  68. Kundu M, Sharma S, De Luca A, Giordano A, Rappaport J, Khalili K, Amini S (1998) HIV-1 Tat elongates the G1 phase and indirectly promotes HIV-1 gene expression in cells of glial origin. J Biol Chem 273:8130–8136PubMedCrossRefGoogle Scholar
  69. Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S (1996) HIV-1-Tat protein promotes chemotaxis and invasive behavior by monocytes. J Immunol 157:974–977PubMedGoogle Scholar
  70. Larder BA, Darby G, Richman DD (1989) HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243:1731–1734PubMedCrossRefGoogle Scholar
  71. Li M (2015) Proteomics in the investigation of HIV-1 interactions with host proteins. Proteomics Clin Appl 9:221–234PubMedPubMedCentralCrossRefGoogle Scholar
  72. Li X, Donowitz M (2008) Fractionation of subcellular membrane vesicles of epithelial and nonepithelial cells by OptiPrep™ density gradient ultracentrifugation. In: Exocytosis and endocytosis. Springer, Berlin Heidelberg, pp 97–110CrossRefGoogle Scholar
  73. Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB (1995) Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268:429–431PubMedCrossRefGoogle Scholar
  74. Li GH, Li W, Mumper RJ, Nath A (2012a) Molecular mechanisms in the dramatic enhancement of HIV-1 Tat transduction by cationic liposomes. FASEB J 26:2824–2834PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li M, Aliotta JM, Asara JM, Tucker L, Quesenberry P, Lally M, Ramratnam B (2012b) Quantitative proteomic analysis of exosomes from HIV-1-infected lymphocytic cells. Proteomics 12:2203–2211PubMedCrossRefGoogle Scholar
  76. Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387PubMedCrossRefGoogle Scholar
  77. Luo X, Fan Y, Park IW, He JJ (2015) Exosomes are unlikely involved in intercellular Nef transfer. PLoS One 10, e0124436PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mann DA, Frankel AD (1991) Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 10:1733–1739PubMedPubMedCentralGoogle Scholar
  79. Megha LE (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279:9997–10004PubMedCrossRefGoogle Scholar
  80. Meredith LW, Sivakumaran H, Major L, Suhrbier A, Harrich D (2009) Potent inhibition of HIV-1 replication by a Tat mutant. PLoS One 4, e7769PubMedPubMedCentralCrossRefGoogle Scholar
  81. Milani D, Zauli G, Neri LM, Marchisio M, Previati M, Capitani S (1993) Influence of the human immunodeficiency virus type 1 Tat protein on the proliferation and differentiation of PC12 rat pheochromocytoma cells. J Gen Virol 74:2587–2594PubMedCrossRefGoogle Scholar
  82. Morgavi P, Bonifaci N, Pagani M, Costigliolo S, Sitia R, Rubartelli A (1997) The association of HIV-1 Tat with nuclei is regulated by Ca2+ ions and cytosolic factors. J Biol Chem 272:11256–11260PubMedCrossRefGoogle Scholar
  83. Nabell LM, Raja RH, Sayeski PP, Paterson AJ, Kudlow JE (1994) Human immunodeficiency virus 1 Tat stimulates transcription of the transforming growth factor alpha gene in an epidermal growth factor- dependent manner. Cell Growth Differ 5:87–93PubMedGoogle Scholar
  84. Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E, Guendel I, Sampey G, Dalby E, Iglesias-Ussel M, Popratiloff A, Hakami R, Kehn-Hall K, Young M, Subra C, Gilbert C, Bailey C, Romerio F, Kashanchi F (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288:20014–20033PubMedPubMedCentralCrossRefGoogle Scholar
  85. Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J (2001) Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 153:529–542PubMedPubMedCentralCrossRefGoogle Scholar
  86. Norman JP, Perry SW, Kasischke KA, Volsky DJ, Gelbard HA (2007) HIV-1 trans activator of transcription protein elicits mitochondrial hyperpolarization and respiratory deficit, with dysregulation of complex IV and nicotinamide adenine dinucleotide homeostasis in cortical neurons. J Immunol 178:869–876PubMedCrossRefGoogle Scholar
  87. Orsini MJ, Debouck CM (1996) Inhibition of human immunodeficiency virus type 1 and type 2 Tat function by transdominant Tat protein localized to both the nucleus and cytoplasm. J Virol 70:8055–8063PubMedPubMedCentralGoogle Scholar
  88. Orsini MJ, Debouck CM, Webb CL, Lysko PG (1996) Extracellular human immunodeficiency virus type 1 Tat protein promotes aggregation and adhesion of cerebellar neurons. J Neurosci 16:2546–2552PubMedGoogle Scholar
  89. Ott DE (2008) Cellular proteins detected in HIV-1. Rev Med Virol 18:159–175PubMedCrossRefGoogle Scholar
  90. Park IW, Wang JF, Groopman JE (2001) HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. Blood 97:352–358PubMedCrossRefGoogle Scholar
  91. Peruzzi F (2006) The multiple functions of HIV-1 Tat: proliferation versus apoptosis. Front Biosci 11:708–717PubMedCrossRefGoogle Scholar
  92. Pocsik E, Higuchi M, Aggarwal BB (1992) Down-modulation of cell surface expression of p80 form of the tumor necrosis factor receptor by human immunodeficiency virus-1 tat gene. Lymphokine Cytokine Res 11:317–325PubMedGoogle Scholar
  93. Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315:1584–1592PubMedCrossRefGoogle Scholar
  94. Puri RK, Aggarwal BB (1992) Human immunodeficiency virus type 1 tat gene up-regulates interleukin 4 receptors on a human B-lymphoblastoid cell line. Cancer Res 52:3787–3790PubMedGoogle Scholar
  95. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rayne F, Debaisieux S, Bonhoure A, Beaumelle B (2010a) HIV-1 Tat is unconventionally secreted through the plasma membrane. Cell Biol Int 34:409–413PubMedCrossRefGoogle Scholar
  97. Rayne F, Debaisieux S, Yezid H, Lin YL, Mettling C, Konate K, Chazal N, Arold ST, Pugniere M, Sanchez F, Bonhoure A, Briant L, Loret E, Roy C, Beaumelle B (2010b) Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J 29:1348–1362PubMedPubMedCentralCrossRefGoogle Scholar
  98. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1841:108–120CrossRefGoogle Scholar
  99. Rice AP, Carlotti F (1990) Structural analysis of wild-type and mutant human immunodeficiency virus type 1 Tat proteins. J Virol 64:6018–6026PubMedPubMedCentralGoogle Scholar
  100. Roy S, Delling U, Chen CH, Rosen CA, Sonenberg N (1990) A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes Dev 4:1365–1373PubMedCrossRefGoogle Scholar
  101. Rusnati M, Tulipano G, Urbinati C, Tanghetti E, Giuliani R, Giacca M, Ciomei M, Corallini A, Presta M (1998) The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonists. J Biol Chem 273:16027–16037PubMedCrossRefGoogle Scholar
  102. Santos S, Obukhov Y, Nekhai S, Bukrinsky M, Iordanskiy S (2012) Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology 9:65PubMedPubMedCentralCrossRefGoogle Scholar
  103. Saphire AC, Gallay PA, Bark SJ (2006) Proteomic analysis of human immunodeficiency virus using liquid chromatography/tandem mass spectrometry effectively distinguishes specific incorporated host proteins. J Proteome Res 5:530–538PubMedCrossRefGoogle Scholar
  104. Sastry KJ, Reddy HR, Pandita R, Totpal K, Aggarwal BB (1990) HIV-1 tat gene induces tumor necrosis factor-beta (lymphotoxin) in a human B-lymphoblastoid cell line. J Biol Chem 265:20091–20093PubMedGoogle Scholar
  105. Schuurman HJ, Joling P, van Wichen DF, Tobin D, van der Putte SC (1993) Epitopes of human immunodeficiency virus regulatory proteins tat, nef and rev are expressed in skin in atopic dermatitis. Int Arch Allergy Immunol 100:107–114PubMedCrossRefGoogle Scholar
  106. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572PubMedCrossRefGoogle Scholar
  107. Schweitzer ES (1993) Regulated and constitutive secretion of distinct molecular forms of acetylcholinesterase from PC12 cells. J Cell Sci 106(Pt 3):731–740PubMedGoogle Scholar
  108. Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581PubMedCrossRefGoogle Scholar
  109. Singh IN, El-Hage N, Campbell ME, Lutz SE, Knapp PE, Nath A, Hauser KF (2005) Differential involvement of p38 and JNK MAP kinases in HIV-1 Tat and gp120-induced apoptosis and neurite degeneration in striatal neurons. Neuroscience 135:781–790PubMedPubMedCentralCrossRefGoogle Scholar
  110. Singhal PC, Sharma P, Garg P (1995) HIV-1 gp160 protein-macrophage interactions modulate mesangial cell proliferation and matrix synthesis. Am J Pathol 147:1780–1789PubMedPubMedCentralGoogle Scholar
  111. Sodroski J, Rosen C, Wong-Staal F, Salahuddin SZ, Popovic M, Arya S, Gallo RC, Haseltine WA (1985) Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science 227:171–173PubMedCrossRefGoogle Scholar
  112. Spiegel S (1990) Cautionary note on the use of the B subunit of cholera toxin as a ganglioside GM1 probe: detection of cholera toxin A subunit in B subunit preparations by a sensitive adenylate cyclase assay. J Cell Biochem 42:143–152PubMedCrossRefGoogle Scholar
  113. Subra C (2013) Dendritic cells pulsed with HIV-1 release exosomes that promote apoptosis in Cd4+ T lymphocytes. J Clin Cell Immunol 04:2CrossRefGoogle Scholar
  114. Tada H, Rappaport J, Lashgari M, Amini S, Wong-Staal F, Khalili K (1990) Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells. Proc Natl Acad Sci U S A 87:3479–3483PubMedPubMedCentralCrossRefGoogle Scholar
  115. Takeuchi Y, McClure MO, Pizzato M (2008) Identification of gammaretroviruses constitutively released from cell lines used for human immunodeficiency virus research. J Virol 82:12585–12588PubMedPubMedCentralCrossRefGoogle Scholar
  116. Tanaka N, Kyuuma M, Sugamura K (2008) Endosomal sorting complex required for transport proteins in cancer pathogenesis, vesicular transport, and non-endosomal functions. Cancer Sci 99:1293–1303PubMedCrossRefGoogle Scholar
  117. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304PubMedCrossRefGoogle Scholar
  118. Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579PubMedGoogle Scholar
  119. Tomlinson AJ, Chicz RM (2003) Microcapillary liquid chromatography/tandem mass spectrometry using alkaline pH mobile phases and positive ion detection. Rapid Commun Mass Spectrom 17:909–916PubMedCrossRefGoogle Scholar
  120. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247PubMedCrossRefGoogle Scholar
  121. Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261PubMedCrossRefGoogle Scholar
  122. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, Bracke M, De Wever O, Hendrix A (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 3Google Scholar
  123. Veschambre P, Simard P, Jalinot P (1995) Evidence for functional interaction between the HIV-1 Tat transactivator and the TATA box binding protein in vivo. J Mol Biol 250:169–180PubMedCrossRefGoogle Scholar
  124. Viscidi RP, Mayur K, Lederman HM, Frankel AD (1989) Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science 246:1606–1608PubMedCrossRefGoogle Scholar
  125. Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017PubMedCrossRefGoogle Scholar
  126. Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, Mayer-Proschel M, Bieberich E (2012) Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 287:21384–21395PubMedPubMedCentralCrossRefGoogle Scholar
  127. Weeks BS, Desai K, Loewenstein PM, Klotman ME, Klotman PE, Green M, Kleinman HK (1993) Identification of a novel cell attachment domain in the HIV-1 Tat protein and its 90-kDa cell surface binding protein. J Biol Chem 268:5279–5284PubMedGoogle Scholar
  128. Wei Q, Fultz PN (1998) Extensive diversification of human immunodeficiency virus type 1 subtype B strains during dual infection of a chimpanzee that progressed to AIDS. J Virol 72:3005–3017PubMedPubMedCentralGoogle Scholar
  129. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462PubMedCrossRefGoogle Scholar
  130. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46:1896–1905PubMedPubMedCentralCrossRefGoogle Scholar
  131. Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375:497–500PubMedCrossRefGoogle Scholar
  132. Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103:738–743PubMedPubMedCentralCrossRefGoogle Scholar
  133. Xiao H, Tao Y, Greenblatt J, Roeder RG (1998) A cofactor, TIP30, specifically enhances HIV-1 Tat-activated transcription. Proc Natl Acad Sci U S A 95:2146–2151PubMedPubMedCentralCrossRefGoogle Scholar
  134. Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT (2000) Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci U S A 97:11466–11471PubMedPubMedCentralCrossRefGoogle Scholar
  135. Xie X, Colberg-Poley AM, Das JR, Li J, Zhang A, Tang P, Jerebtsova M, Gutkind JS, Ray PE (2014) The basic domain of HIV-tat transactivating protein is essential for its targeting to lipid rafts and regulating fibroblast growth factor-2 signaling in podocytes isolated from children with HIV-1-associated nephropathy. J Am Soc Nephrol 25:1800–1813PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zauli G, Gibellini D, Milani D, Mazzoni M, Borgatti P, La Placa M, Capitani S (1993) Human immunodeficiency virus type 1 Tat protein protects lymphoid, epithelial, and neuronal cell lines from death by apoptosis. Cancer Res 53:4481–4485PubMedGoogle Scholar
  137. Zauli G, La Placa M, Vignoli M, Re MC, Gibellini D, Furlini G, Milani D, Marchisio M, Mazzoni M, Capitani S (1995) An autocrine loop of HIV type-1 Tat protein responsible for the improved survival/proliferation capacity of permanently Tat-transfected cells and required for optimal HIV-1 LTR transactivating activity. J Acquir Immune Defic Syndr Hum Retrovirol 10:306–316PubMedCrossRefGoogle Scholar
  138. Zhou BY, He JJ (2004) Proliferation inhibition of astrocytes, neurons, and non-glial cells by intracellularly expressed human immunodeficiency virus type 1 (HIV-1) Tat protein. Neurosci Lett 359:155–158PubMedCrossRefGoogle Scholar
  139. Zhou BY, Liu Y, Kim B, Xiao Y, He JJ (2004) Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Mol Cell Neurosci 27:296–305PubMedCrossRefGoogle Scholar
  140. Zou W, Kim BO, Zhou BY, Liu Y, Messing A, He JJ (2007) Protection against human immunodeficiency virus type 1 Tat neurotoxicity by Ginkgo biloba extract EGb 761 involving glial fibrillary acidic protein. Am J Pathol 171:1923–1935PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zou W, Wang Z, Liu Y, Fan Y, Zhou BY, Yang XF, He JJ (2010) Involvement of p300 in constitutive and HIV-1 Tat-activated expression of glial fibrillary acidic protein in astrocytes. Glia 58:1640–1648PubMedPubMedCentralGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2016

Authors and Affiliations

  1. 1.Department of Cell Biology and Immunology, Graduate School of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthUSA

Personalised recommendations