Journal of NeuroVirology

, Volume 22, Issue 5, pp 666–673 | Cite as

Cystatin B and HIV regulate the STAT-1 signaling circuit in HIV-infected and INF-β-treated human macrophages

  • L. E. Rivera
  • E. Kraiselburd
  • L. M. MeléndezEmail author


Cystatin B is a cysteine protease inhibitor that induces HIV replication in monocyte-derived macrophages (MDM). This protein interacts with signal transducer and activator of transcription (STAT-1) factor and inhibits the interferon (IFN-β) response in Vero cells by preventing STAT-1 translocation to the nucleus. Cystatin B also decreases the levels of tyrosine-phosphorylated STAT-1 (STAT-1PY). However, the mechanisms of cystatin B regulation on STAT-1 phosphorylation in MDM are unknown. We hypothesized that cystatin B inhibits IFN-β antiviral responses and induces HIV replication in macrophage reservoirs through the inhibition of STAT-1 phosphorylation. Macrophages were transfected with cystatin B siRNA prior to interferon-β treatment or infected with HIV-ADA to determine the effect of cystatin B modulation in STAT-1 localization and activation using immunofluorescence and proximity ligation assays. Cystatin B decreased STAT-1PY and its transportation to the nucleus, while HIV infection retained unphosphorylated STAT (USTAT-1) in the nucleus avoiding its exit to the cytoplasm for eventual phosphorylation. In IFN-β-treated MDM, cystatin B inhibited the nuclear translocation of both, USTAT-1 and STAT-1PY. These results demonstrate that cystatin B interferes with the STAT-1 signaling and IFN-β-antiviral responses perpetuating HIV in macrophage reservoirs.


HIV Cystatin B STAT-1 Macrophages IFN-β 



We thank Dr. Howard Gendelman for providing HIV-ADA and Lic. Bismark Madera from the Confocal Image Facility at the University of Puerto Rico-Rio Piedras Campus. This work was supported in part by NIH grants F32 MH094210, R01 AI094603, R01 MH08316, U54 NS431, ISI0 RR-13705-01, and DBI-0923132 to establish and upgrade the Confocal Microscopy Facility at the University of Puerto Rico (CIF-UPR), and institutional funds from University of Puerto Rico Presidency. We thank the 8U54MD007587-03 (RCMI Clinical and Translational Research award, University of Puerto Rico Medical Sciences Campus) from the National Institute on Minority Health and Health Disparities (NIMHD) and the editorial services of Dr. Deana Hallman from the Puerto Rico Clinical and Translational Research Consortium, which are supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number 2U54MD007587. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with ethical standards

Conflict of Interest

LMM has a patent application approved for cystatin B, related to this manuscript. Pat No. 8,143,231.

Supplementary material

13365_2016_443_MOESM1_ESM.pdf (158 kb)
ESM 1 (PDF 157 kb)
13365_2016_443_MOESM2_ESM.pdf (153 kb)
ESM 2 (PDF 152 kb)
13365_2016_443_MOESM3_ESM.pdf (132 kb)
ESM 3 (PDF 131 kb)


  1. Aboud L, Ball TB, Tjernlund A, Burgener A (2014) The role of serpin and cystatin antiproteases in mucosal innate immunity and their defense against HIV. Am J Reprod Immunol 71:12–23. doi: 10.1111/aji.12166 CrossRefPubMedGoogle Scholar
  2. Burdo TH, Walker J, and Williams KC (2015) Macrophage polarization in AIDS: dynamic interface between anti-viral and anti-inflammatory macrophages during acute and chronic infection.Google Scholar
  3. Burgener A, Rahman S, Ahmad R et al (2011) Comprehensive proteomic study identifies serpin and cystatin antiproteases as novel correlates of HIV-1 resistance in the cervicovaginal mucosa of female sex workers. J Proteome Res 10:5139–49. doi: 10.1021/pr200596r CrossRefPubMedGoogle Scholar
  4. Cantres-Rosario Y, Plaud-Valentín M, Gerena Y et al (2013) Cathepsin B and cystatin B in HIV-seropositive women are associated with infection and HIV-1-associated neurocognitive disorders. AIDS 27:347–356. doi: 10.1097/QAD.0b013e32835b3e47
  5. Cassetta L, Kajaste-Rudnitski A, Coradin T et al (2013) M1 polarization of human monocyte-derived macrophages restricts pre and postintegration steps of HIV-1 replication. Aids 27:1847–1856. doi: 10.1097/QAD.0b013e328361d059 CrossRefPubMedGoogle Scholar
  6. Cheon H, Stark GR (2009) Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes. Proc Natl Acad Sci U S A 106:9373–8. doi: 10.1073/pnas.0903487106 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Eligini S, Bioshchi M, Fiorelli S et al (2015) Human monocyte-derived macrophages are heterogenous: proteomic profile of different phenotypes. J Proteomics 124:112–123Google Scholar
  8. Huang Y, Walstrom A, Zhang L et al (2009) Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected macrophages. PLoS One 4:5397CrossRefGoogle Scholar
  9. Kossow C, Jose D, Jaster R et al (2012) Mathematical modelling unravels regulatory mechanisms of interferon--induced STAT1 serine-phosphorylation and MUC4 expression in pancreatic cancer cells. IET Syst Biol 6:73CrossRefPubMedGoogle Scholar
  10. Luciano-Montalvo C, Meléndez LM (2009) Cystatin B associates with signal transducer and activator of transcription 1 in monocyte-derived and placental macrophages. Placenta 30:464–7. doi: 10.1016/j.placenta.2009.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Luciano-Montalvo C, Ciborowski P, Duan F et al (2008) Proteomic analyses associate cystatin B with restricted HIV-1 replication in placental macrophages. Placenta 29:1016–23. doi: 10.1016/j.placenta.2008.09.005 CrossRefPubMedGoogle Scholar
  12. Ma J, Zhang T, Novotny-Diermayr V et al (2003) A novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation. J Biol Chem 278:29252–60. doi: 10.1074/jbc.M304196200 CrossRefPubMedGoogle Scholar
  13. Magnani M, Balestra E, Fraternale A et al (2003) Drug-loaded red blood cell-mediated clearance of HIV-1 macrophage reservoir by selective inhibition of STAT1 expression. J Leukoc Biol 74:764–71. doi: 10.1189/jlb.0403156 CrossRefPubMedGoogle Scholar
  14. Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686Google Scholar
  15. Marg A, Shan Y, Meyer T et al (2004) Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1. J Cell Biol 165:823–33. doi: 10.1083/jcb.200403057 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Maródi L, Goda K, Palicz A, Szabó G (2001) Cytokine receptor signalling in neonatal macrophages: defective STAT-1 phosphorylation in response to stimulation with IFN-gamma. Clin Exp Immunol 126:456–60CrossRefPubMedPubMedCentralGoogle Scholar
  17. McBride KM, Banninger G, McDonald C, Reich NC (2002) Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J 21:1754–63. doi: 10.1093/emboj/21.7.1754 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Melen K, Kinnunen L, Julkunen I (2001) Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J Biol Chem 276:16447–55. doi: 10.1074/jbc.M008821200 CrossRefPubMedGoogle Scholar
  19. Meyer T, Begitt A, Lödige I et al (2002) Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways. EMBO J 21:344–54. doi: 10.1093/emboj/21.3.344 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Meyer T, Marg A, Lemke P et al (2003) DNA binding controls inactivation and nuclear accumulation of the transcription factor Stat1. Genes Dev 17:1992–2005. doi: 10.1101/gad.268003 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Rivera LE, Colon K, Cantres-Rosario YM et al (2014) Macrophage derived cystatin B/cathepsin B in HIV replication and neuropathogenesis. Curr HIV Res 12:111–20. doi: 10.2174/1570162X12666140526120249#sthash.VknKStYj.dpuf CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rivera-Rivera L, Perez-Laspiur J, Colón K, Meléndez LM (2012) Inhibition of interferon response by cystatin B: implication in HIV replication of macrophage reservoirs. J Neurovirol 18:20–9. doi: 10.1007/s13365-011-0061-2 CrossRefPubMedGoogle Scholar
  23. Rodriguez-Franco EJ, Cantres-Rosario YM, Plaud-Valentin M et al (2012) Dysregulation of macrophage-secreted cathepsin B contributes to HIV-1-linked neuronal apoptosis. PLoS One 7:e36571. doi: 10.1371/journal.pone.0036571
  24. Romas LM, Hasselrot K, Aboud LG et al (2014) A comparative proteomic analysis of the soluble immune factor environment of rectal and oral mucosa. PLoS One 9:e100820. doi: 10.1371/journal.pone.0100820 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sang Y, Miller LC, Blecha F (2015) Macrophage polarization in virus-host interactions. J Clin Cell Immunol. doi: 10.4172/2155-9899.1000311 PubMedPubMedCentralGoogle Scholar
  26. Vinkemeier U (2004) Getting the message across, STAT! design principles of a molecular signaling circuit. J Cell Biol 167:197–201. doi: 10.1083/jcb.200407163 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Warby TJ, Crowe SM, Jaworowski A, Macrophages M (2003) Human immunodeficiency virus type 1 infection inhibits granulocyte-macrophage activation of STAT5A in human immunodeficiency virus type 1 infection inhibits factor-induced activation of STAT5A in human monocyte-derived macrophages. J Virol 77:12630–8. doi: 10.1128/JVI.77.23.12630 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2016

Authors and Affiliations

  • L. E. Rivera
    • 1
  • E. Kraiselburd
    • 2
  • L. M. Meléndez
    • 2
    Email author
  1. 1.Universidad del EsteCarolinaUSA
  2. 2.Department of Microbiology and Medical ZoologyUniversity of Puerto Rico-Medical Sciences CampusSan JuanUSA

Personalised recommendations