Advertisement

Journal of NeuroVirology

, Volume 22, Issue 4, pp 403–415 | Cite as

Defining the roles for Vpr in HIV-1-associated neuropathogenesis

  • Tony James
  • Michael R. Nonnemacher
  • Brian Wigdahl
  • Fred C. KrebsEmail author
Review

Abstract

It is increasingly evident that the human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has a unique role in neuropathogenesis. Its ability to induce G2/M arrest coupled with its capacity to increase viral gene transcription gives it a unique role in sustaining viral replication and aiding in the establishment and maintenance of a systemic infection. The requirement of Vpr for HIV-1 infection and replication in cells of monocytic origin (a key lineage of cells involved in HIV-1 neuroinvasion) suggests an important role in establishing and sustaining infection in the central nervous system (CNS). Contributions of Vpr to neuropathogenesis can be expanded further through (i) naturally occurring HIV-1 sequence variation that results in functionally divergent Vpr variants; (ii) the dual activities of Vpr as a intracellular protein delivered and expressed during HIV-1 infection and as an extracellular protein that can act on neighboring, uninfected cells; (iii) cell type-dependent consequences of Vpr expression and exposure, including cell cycle arrest, metabolic dysregulation, and cytotoxicity; and (iv) the effects of Vpr on exosome-based intercellular communication in the CNS. Revealing that the effects of this pleiotropic viral protein is an essential part of a greater understanding of HIV-1-associated pathogenesis and potential approaches to treating and preventing disease caused by HIV-1 infection.

Keywords

HIV-1 Vpr Neuropathogenesis Brain Exosome 

Notes

Acknowledgments

This work was partially supported by P30 MH092177 Comprehensive NeuroAIDS Center (CNAC, Program Director: Kamel Khalili, Brian Wigdahl, PI of the Drexel subcontract). These studies were also supported by the Public Health Service, National Institutes of Health, through grants from the National Institute of Neurological Disorders and Stroke (NS32092 and NS46263), the National Institute of Drug Abuse (DA19807; Dr. Brian Wigdahl, Principal Investigator), and the National Institute of Mental Health under the Ruth L. Kirschstein National Research Service Award (5T32MH079785; Jay Rappaport, PI, Brian Wigdahl, PI of the Drexel subcontract). The contents of the paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Dr. Michael Nonnemacher was supported in part by the Public Health Service, National Institutes of Health, through a grant from the National Institute of Neurological Disorders and Stroke (NS089435) and faculty development funds provided by the Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease. Dr. Fred Krebs was supported by a developmental grant awarded by CNAC.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Andersen JL, DeHart JL, Zimmerman ES, Ardon O, Kim B, Jacquot G, Benichou S, Planelles V (2006) HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT. PLoS Pathog 2, e127CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arenaccio C, Chiozzini C, Columba-Cabezas S, Manfredi F, Affabris E, Baur A, Federico M (2014) Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4+ T lymphocytes to replicate HIV-1 through a Nef- and ADAM17-dependent mechanism. J Virol 88:11529–11539CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bachand F, Yao XJ, Hrimech M, Rougeau N, Cohen EA (1999) Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 Gag precursor. J Biol Chem 274:9083–9091CrossRefPubMedGoogle Scholar
  4. Barrero CA, Datta PK, Sen S, Deshmane S, Amini S, Khalili K, Merali S (2013) HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One 8, e68376CrossRefPubMedPubMedCentralGoogle Scholar
  5. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bobrie A, Thery C (2013) Unraveling the physiological functions of exosome secretion by tumors. Oncoimmunology 2, e22565CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12:1659–1668CrossRefPubMedGoogle Scholar
  8. Bolton DL, Lenardo MJ (2007) Vpr cytopathicity independent of G2/M cell cycle arrest in human immunodeficiency virus type 1-infected CD4+ T cells. J Virol 81:8878–8890CrossRefPubMedPubMedCentralGoogle Scholar
  9. Borjabad A, Brooks AI, Volsky DJ (2010) Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 5:44–62CrossRefPubMedGoogle Scholar
  10. Cali L, Wang B, Mikhail M, Gill MJ, Beckthold B, Salemi M, Jans DA, Piller SC, Saksena NK (2005) Evidence for host-driven selection of the HIV type 1 vpr gene in vivo during HIV disease progression in a transfusion-acquired cohort. AIDS Res Hum Retrovir 21:728–733CrossRefPubMedGoogle Scholar
  11. Chen N, McCarthy C, Drakesmith H, Li D, Cerundolo V, McMichael AJ, Screaton GR, Xu XN (2006) HIV-1 down-regulates the expression of CD1d via Nef. Eur J Immunol 36:278–286CrossRefPubMedGoogle Scholar
  12. Cohen RA, Seider TR, Navia B (2015) HIV effects on age-associated neurocognitive dysfunction: premature cognitive aging or neurodegenerative disease? Alzheimers Res Ther 7:37CrossRefPubMedPubMedCentralGoogle Scholar
  13. Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, Ellis R, Cherner M, Grant I, Masliah E (2013) Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology 80:1415–1423CrossRefPubMedPubMedCentralGoogle Scholar
  14. Emerman M (1996) HIV-1, Vpr and the cell cycle. Curr Biol 6:1096–1103CrossRefPubMedGoogle Scholar
  15. Ferrucci A, Nonnemacher MR, Wigdahl B (2011a) Cellular phenotype impacts human immunodeficiency virus type 1 viral protein R subcellular localization. Virol J 8:397CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ferrucci A, Nonnemacher MR, Wigdahl B (2011b) Human immunodeficiency virus viral protein R as an extracellular protein in neuropathogenesis. Adv Virus Res 81:165–199CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ferrucci A, Nonnemacher MR, Cohen EA, Wigdahl B (2012) Extracellular human immunodeficiency virus type 1 viral protein R causes reductions in astrocytic ATP and glutathione levels compromising the antioxidant reservoir. Virus Res 167:358–369CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ferrucci A, Nonnemacher MR, Wigdahl B (2013) Extracellular HIV-1 viral protein R affects astrocytic glyceraldehyde 3-phosphate dehydrogenase activity and neuronal survival. J Neurovirol 19:239–253CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fiala M, Rhodes RH, Shapshak P, Nagano I, Martinez-Maza O, Diagne A, Baldwin G, Graves M (1996) Regulation of HIV-1 infection in astrocytes: expression of Nef, TNF-alpha and IL-6 is enhanced in coculture of astrocytes with macrophages. J Neurovirol 2:158–166CrossRefPubMedGoogle Scholar
  20. Fischer-Smith T, Tedaldi EM, Rappaport J (2008) CD163/CD16 coexpression by circulating monocytes/macrophages in HIV: potential biomarkers for HIV infection and AIDS progression. AIDS Res Hum Retrovir 24:417–421CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fraser C, Lythgoe K, Leventhal GE, Shirreff G, Hollingsworth TD, Alizon S, Bonhoeffer S (2014) Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science 343:1243727CrossRefPubMedGoogle Scholar
  22. Fruhbeis C, Frohlich D, Kramer-Albers EM (2012) Emerging roles of exosomes in neuron-glia communication. Front Physiol 3:119CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM (2013) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7:182CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gallay P, Stitt V, Mundy C, Oettinger M, Trono D (1996) Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J Virol 70:1027–1032PubMedPubMedCentralGoogle Scholar
  25. Gangwani MR, Noel RJ Jr, Shah A, Rivera-Amill V, Kumar A (2013) Human immunodeficiency virus type 1 viral protein R (Vpr) induces CCL5 expression in astrocytes via PI3K and MAPK signaling pathways. J Neuroinflammation 10:136CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gerard FC, Yang R, Romani B, Poisson A, Belzile JP, Rougeau N, Cohen EA (2014) Defining the interactions and role of DCAF1/VPRBP in the DDB1-cullin4A E3 ubiquitin ligase complex engaged by HIV-1 Vpr to induce a G2 cell cycle arrest. PLoS One 9, e89195CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ghiotto F, Fais F, Bruno S (2010) BH3-only proteins: the death-puppeteer’s wires. Cytometry A 77:11–21PubMedGoogle Scholar
  28. Goh WC, Rogel ME, Kinsey CM, Michael SF, Fultz PN, Nowak MA, Hahn BH, Emerman M (1998) HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med 4:65–71CrossRefPubMedGoogle Scholar
  29. Guenzel CA, Herate C, Benichou S (2014) HIV-1 Vpr-a still “enigmatic multitasker”. Front Microbiol 5:127CrossRefPubMedPubMedCentralGoogle Scholar
  30. Guha D, Nagilla P, Redinger C, Srinivasan A, Schatten GP, Ayyavoo V (2012) Neuronal apoptosis by HIV-1 Vpr: contribution of proinflammatory molecular networks from infected target cells. J Neuroinflammation 9:138CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harris MJ, Coggan M, Langton L, Wilson SR, Board PG (1998) Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients. Pharmacogenetics 8:27–31CrossRefPubMedGoogle Scholar
  32. Haughey NJ, Cutler RG, Tamara A, McArthur JC, Vargas DL, Pardo CA, Turchan J, Nath A, Mattson MP (2004) Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann Neurol 55:257–267CrossRefPubMedGoogle Scholar
  33. Haughton V, Mardal KA (2014) Spinal fluid biomechanics and imaging: an update for neuroradiologists. AJNR Am J Neuroradiol 35:1864–1869CrossRefPubMedGoogle Scholar
  34. Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G, Li J, Yu Y, Sasaki M, Horner JW, Burga LN, Xie J, Jurczak MJ, DePinho RA, Clish CB, Jacks T, Kibbey RG, Wulf GM, Di Vizio D, Mills GB, Cantley LC, Vander Heiden MG (2013) PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155:397–409CrossRefPubMedGoogle Scholar
  35. Jacotot E, Ravagnan L, Loeffler M, Ferri KF, Vieira HL, Zamzami N, Costantini P, Druillennec S, Hoebeke J, Briand JP, Irinopoulou T, Daugas E, Susin SA, Cointe D, Xie ZH, Reed JC, Roques BP, Kroemer G (2000) The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 191:33–46CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jacotot E, Ferri KF, El Hamel C, Brenner C, Druillennec S, Hoebeke J, Rustin P, Metivier D, Lenoir C, Geuskens M, Vieira HL, Loeffler M, Belzacq AS, Briand JP, Zamzami N, Edelman L, Xie ZH, Reed JC, Roques BP, Kroemer G (2001) Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein rR and Bcl-2. J Exp Med 193:509–519CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jones GJ, Barsby NL, Cohen EA, Holden J, Harris K, Dickie P, Jhamandas J, Power C (2007) HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci 27:3703–3711CrossRefPubMedGoogle Scholar
  38. King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kino T, Gragerov A, Kopp JB, Stauber RH, Pavlakis GN, Chrousos GP (1999) The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor. J Exp Med 189:51–62CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kino T, Tsukamoto M, Chrousos G (2002) Transcription factor TFIIH components enhance the GR coactivator activity but not the cell cycle-arresting activity of the human immunodeficiency virus type-1 protein Vpr. Biochem Biophys Res Commun 298:17–23CrossRefPubMedGoogle Scholar
  41. Klarmann GJ, Chen X, North TW, Preston BD (2003) Incorporation of uracil into minus strand DNA affects the specificity of plus strand synthesis initiation during lentiviral reverse transcription. J Biol Chem 278:7902–7909CrossRefPubMedGoogle Scholar
  42. Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C, Mobius W, Berger H, Nave KA, Schild H, Trotter J (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1:1446–1461CrossRefPubMedGoogle Scholar
  43. Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111:194–213CrossRefPubMedGoogle Scholar
  44. Kuslansky G, Katz M, Verghese J, Hall CB, Lapuerta P, LaRuffa G, Lipton RB (2004) Detecting dementia with the Hopkins verbal learning test and the mini-mental state examination. Arch Clin Neuropsychol 19:89–104CrossRefPubMedGoogle Scholar
  45. Langford D, Marquie-Beck J, de Almeida S, Lazzaretto D, Letendre S, Grant I, McCutchan JA, Masliah E, Ellis RJ (2006) Relationship of antiretroviral treatment to postmortem brain tissue viral load in human immunodeficiency virus-infected patients. J Neurovirol 12:100–107CrossRefPubMedGoogle Scholar
  46. Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11:110–122CrossRefPubMedPubMedCentralGoogle Scholar
  47. Levy DN, Refaeli Y, MacGregor RR, Weiner DB (1994) Serum Vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 91:10873–10877CrossRefPubMedPubMedCentralGoogle Scholar
  48. Levy DN, Refaeli Y, Weiner DB (1995) Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J Virol 69:1243–1252PubMedPubMedCentralGoogle Scholar
  49. Li D, Xu XN (2008) NKT cells in HIV-1 infection. Cell Res 18:817–822CrossRefPubMedGoogle Scholar
  50. Li M, Aliotta JM, Asara JM, Tucker L, Quesenberry P, Lally M, Ramratnam B (2012) Quantitative proteomic analysis of exosomes from HIV-1-infected lymphocytic cells. Proteomics 12:2203–2211CrossRefPubMedGoogle Scholar
  51. Liu NQ, Lossinsky AS, Popik W, Li X, Gujuluva C, Kriederman B, Roberts J, Pushkarsky T, Bukrinsky M, Witte M, Weinand M, Fiala M (2002) Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol 76:6689–6700CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lum JJ, Cohen OJ, Nie Z, Weaver JG, Gomez TS, Yao XJ, Lynch D, Pilon AA, Hawley N, Kim JE, Chen Z, Montpetit M, Sanchez-Dardon J, Cohen EA, Badley AD (2003) Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J Clin Invest 111:1547–1554CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mansky LM, Preveral S, Selig L, Benarous R, Benichou S (2000) The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. J Virol 74:7039–7047CrossRefPubMedPubMedCentralGoogle Scholar
  54. Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202:13–23CrossRefPubMedGoogle Scholar
  55. Mirani M, Elenkov I, Volpi S, Hiroi N, Chrousos GP, Kino T (2002) HIV-1 protein Vpr suppresses IL-12 production from human monocytes by enhancing glucocorticoid action: potential implications of Vpr coactivator activity for the innate and cellular immunity deficits observed in HIV-1 infection. J Immunol 169:6361–6368CrossRefPubMedGoogle Scholar
  56. Mologni D, Citterio P, Menzaghi B, Zanone Poma B, Riva C, Broggini V, Sinicco A, Milazzo L, Adorni F, Rusconi S, Galli M, Riva A, rHoPe SG (2006) Vpr and HIV-1 disease progression: R77Q mutation is associated with long-term control of HIV-1 infection in different groups of patients. AIDS 20:567–574CrossRefPubMedGoogle Scholar
  57. Muthumani K, Kudchodkar S, Papasavvas E, Montaner LJ, Weiner DB, Ayyavoo V (2000) HIV-1 Vpr regulates expression of beta chemokines in human primary lymphocytes and macrophages. J Leukoc Biol 68:366–372PubMedGoogle Scholar
  58. Nitahara-Kasahara Y, Kamata M, Yamamoto T, Zhang X, Miyamoto Y, Muneta K, Iijima S, Yoneda Y, Tsunetsugu-Yokota Y, Aida Y (2007) Novel nuclear import of Vpr promoted by importin alpha is crucial for human immunodeficiency virus type 1 replication in macrophages. J Virol 81:5284–5293CrossRefPubMedPubMedCentralGoogle Scholar
  59. Omasits U, Ahrens CH, Muller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30:884–886CrossRefPubMedGoogle Scholar
  60. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565CrossRefPubMedGoogle Scholar
  61. Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, Santambrogio L (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243CrossRefPubMedGoogle Scholar
  62. Rao VR, Ruiz AP, Prasad VR (2014) Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 11:13CrossRefPubMedPubMedCentralGoogle Scholar
  63. Re F, Luban J (1997) HIV-1 Vpr: G2 cell cycle arrest, macrophages and nuclear transport. Prog Cell Cycle Res 3:21–27CrossRefPubMedGoogle Scholar
  64. Roux P, Alfieri C, Hrimech M, Cohen EA, Tanner JE (2000) Activation of transcription factors NF-kappaB and NF-IL-6 by human immunodeficiency virus type 1 protein R (Vpr) induces interleukin-8 expression. J Virol 74:4658–4665CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sacktor N, Lyles RH, Skolasky R, Kleeberger C, Selnes OA, Miller EN, Becker JT, Cohen B, McArthur JC, Multicenter ACS (2001) HIV-associated neurologic disease incidence changes: multicenter AIDS cohort study, 1990–1998. Neurology 56:257–260CrossRefPubMedGoogle Scholar
  66. Sampey GC, Meyering SS, Asad Zadeh M, Saifuddin M, Hakami RM, Kashanchi F (2014) Exosomes and their role in CNS viral infections. J Neurovirol 20:199–208CrossRefPubMedPubMedCentralGoogle Scholar
  67. Schuler W, Wecker K, de Rocquigny H, Baudat Y, Sire J, Roques BP (1999) NMR structure of the (52–96) C-terminal domain of the HIV-1 regulatory protein Vpr: molecular insights into its biological functions. J Mol Biol 285:2105–2117CrossRefPubMedGoogle Scholar
  68. Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5:437–448CrossRefPubMedGoogle Scholar
  69. Sherman MP, de Noronha CM, Eckstein LA, Hataye J, Mundt P, Williams SA, Neidleman JA, Goldsmith MA, Greene WC (2003) Nuclear export of Vpr is required for efficient replication of human immunodeficiency virus type 1 in tissue macrophages. J Virol 77:7582–7589CrossRefPubMedPubMedCentralGoogle Scholar
  70. Si Q, Kim MO, Zhao ML, Landau NR, Goldstein H, Lee S (2002) Vpr- and Nef-dependent induction of RANTES/CCL5 in microglial cells. Virology 301:342–353CrossRefPubMedGoogle Scholar
  71. Simons M, Raposo G (2009) Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581CrossRefPubMedGoogle Scholar
  72. Somasundaran M, Sharkey M, Brichacek B, Luzuriaga K, Emerman M, Sullivan JL, Stevenson M (2002) Evidence for a cytopathogenicity determinant in HIV-1 Vpr. Proc Natl Acad Sci U S A 99:9503–9508CrossRefPubMedPubMedCentralGoogle Scholar
  73. Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, Chalmers RT, Webb DJ, Dear JW (2012) Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med 10:5CrossRefPubMedPubMedCentralGoogle Scholar
  74. Tcherepanova I, Starr A, Lackford B, Adams MD, Routy JP, Boulassel MR, Calderhead D, Healey D, Nicolette C (2009) The immunosuppressive properties of the HIV Vpr protein are linked to a single highly conserved residue, R90. PLoS One 4, e5853CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tomita S, Ueno M, Sakamoto M, Kitahama Y, Ueki M, Maekawa N, Sakamoto H, Gassmann M, Kageyama R, Ueda N, Gonzalez FJ, Takahama Y (2003) Defective brain development in mice lacking the Hif-1alpha gene in neural cells. Mol Cell Biol 23:6739–6749CrossRefPubMedPubMedCentralGoogle Scholar
  76. Torres L, Noel RJ Jr (2014) Astrocytic expression of HIV-1 viral protein R in the hippocampus causes chromatolysis, synaptic loss and memory impairment. J Neuroinflammation 11:53CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tozzi V, Balestra P, Serraino D, Bellagamba R, Corpolongo A, Piselli P, Lorenzini P, Visco-Comandini U, Vlassi C, Quartuccio ME, Giulianelli M, Noto P, Galgani S, Ippolito G, Antinori A, Narciso P (2005) Neurocognitive impairment and survival in a cohort of HIV-infected patients treated with HAART. AIDS Res Hum Retrovir 21:706–713CrossRefPubMedGoogle Scholar
  78. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247CrossRefPubMedGoogle Scholar
  79. Wang B, Ge YC, Palasanthiran P, Xiang SH, Ziegler J, Dwyer DE, Randle C, Dowton D, Cunningham A, Saksena NK (1996) Gene defects clustered at the C-terminus of the vpr gene of HIV-1 in long-term nonprogressing mother and child pair: in vivo evolution of vpr quasispecies in blood and plasma. Virology 223:224–232CrossRefPubMedGoogle Scholar
  80. Wecker K, Roques BP (1999) NMR structure of the (1–51) N-terminal domain of the HIV-1 regulatory protein Vpr. Eur J Biochem 266:359–369CrossRefPubMedGoogle Scholar
  81. Wecker K, Morellet N, Bouaziz S, Roques BP (2002) NMR structure of the HIV-1 regulatory protein Vpr in H2O/trifluoroethanol. Comparison with the Vpr N-terminal (1–51) and C-terminal (52–96) domains. Eur J Biochem 269:3779–3788CrossRefPubMedGoogle Scholar
  82. Xin H, Li Y, Chopp M (2014) Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 8:377CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zahoor MA, Xue G, Sato H, Murakami T, Takeshima SN, Aida Y (2014) HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages. PLoS One 9, e106418CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhang J, Fujii S, Wu Z, Hashioka S, Tanaka Y, Shiratsuchi A, Nakanishi Y, Nakanishi H (2006) Involvement of COX-1 and up-regulated prostaglandin E synthases in phosphatidylserine liposome-induced prostaglandin E2 production by microglia. J Neuroimmunol 172:112–120CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2016

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaUSA
  2. 2.Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations