Journal of NeuroVirology

, Volume 22, Issue 3, pp 327–335 | Cite as

Expression of CHRFAM7A and CHRNA7 in neuronal cells and postmortem brain of HIV-infected patients: considerations for HIV-associated neurocognitive disorder

  • Félix M. Ramos
  • Manuel Delgado-Vélez
  • Ángel L. Ortiz
  • Carlos A. Báez-Pagán
  • Orestes Quesada
  • José A. Lasalde-Dominicci


Despite the recent advances in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1) remains a global health threat. HIV-1 affects the central nervous system by releasing viral proteins that trigger neuronal death and neuroinflammation, and promotes alterations known as HIV-associated neurocognitive disorders (HAND). This disorder is not fully understood, and no specific treatments are available. Recently, we demonstrated that the HIV-1 envelope protein gp120IIIB induces a functional upregulation of the α7-nicotinic acetylcholine receptor (α7) in neuronal cells. Furthermore, this upregulation promotes cell death that can be abrogated with receptor antagonists, suggesting that α7 may play an important role in the development of HAND. The partial duplication of the gene coding for the α7, known as CHRFAM7A, negatively regulates α7 expression but its role in HIV infection has not been studied. Hence, we studied both CHRNA7 and CHRFAM7A regulation patterns in various gp120IIIB in vitro conditions. In addition, we measured CHRNA7 and CHRFAM7A expression levels in postmortem brain samples from patients suffering from different stages of HAND. Our results demonstrate the induction of CHRNA7 expression accompanied by a significant downregulation of CHRFAM7A in neuronal cells when exposed to pathophysiological concentrations of gp120IIIB. Our results suggest a dysregulation of CHRFAM7A and CHRNA7 expressions in the basal ganglia from postmortem brain samples of HIV+ subjects and expand the current knowledge about the consequences of HIV infection in the brain.


gp120 HIV HAND Nicotinic acetylcholine receptor CHRNA7 CHRFAM7A 



We are very grateful for Dr. Valerie Wojna’s valuable suggestions and in depth review of this manuscript. We thank the National NeuroAIDS Tissue Consortium (NNTC) and the Data Coordinating Center (DCC) which is a project funded by the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke under the following grants: U24MH100928 (California NeuroAIDS Tissue Network), U24MH100930 (Texas NeuroAIDS Research Center), and U24MH100929 (UCLA National Neurological AIDS Bank). This research was supported by the National Institutes of Health-NINDS and National Institute of General Medical Sciences (NIGMS) grants (1P20GM103642 and 2U54NS43011 to José A. Lasalde-Dominicci), the RISE Program from NIGMS (2R25GM061151 to Manuel Delgado-Vélez and Orestes Quesada), and MARC Program from NIGMS (5T34GM007821 to Orestes Quesada and Felix M. Ramos). Research reported in this publication was supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number U54MD007587 and the National Institute of Mental Health (NIMH) grant Number P30MH075673-07 to Carlos A. Báez-Pagán. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Adle-Biassette H, Levy Y, Colombel M et al (1995) Neuronal apoptosis in HIV infection in adults. Neuropathol Appl Neurobiol 21:218–227CrossRefPubMedGoogle Scholar
  2. Antinori A, Arendt G, Becker JT et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799. doi: 10.1212/01.WNL.0000287431.88658.8b CrossRefPubMedPubMedCentralGoogle Scholar
  3. Araud T, Graw S, Berger R et al (2011) The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of α7*nAChR function. Biochem Pharmacol 82:904–914. doi: 10.1016/j.bcp.2011.06.018 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Azam L, Winzer-Serhan U, Leslie FM (2003) Co-expression of alpha7 and beta2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons. Neuroscience 119:965–977CrossRefPubMedGoogle Scholar
  5. Ballester LY, Capó-Vélez CM, García-Beltrán WF et al (2012) Up-regulation of the neuronal nicotinic receptor α7 by HIV glycoprotein 120: potential implications for HIV-associated neurocognitive disorder. J Biol Chem 287:3079–3086. doi: 10.1074/jbc.M111.262543 CrossRefPubMedGoogle Scholar
  6. Bardi G, Sengupta R, Khan MZ et al (2006) Human immunodeficiency virus gp120-induced apoptosis of human neuroblastoma cells in the absence of CXCR4 internalization. J Neurovirol 12:211–218. doi: 10.1080/13550280600848373 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Benfante R, Antonini RA, De Pizzol M et al (2011) Expression of the α7 nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS. J Neuroimmunol 230:74–84. doi: 10.1016/j.jneuroim.2010.09.008 CrossRefPubMedGoogle Scholar
  8. Berger JR, Arendt G (2000) HIV dementia: the role of the basal ganglia and dopaminergic systems. J Psychopharmacol Oxf Engl 14:214–221CrossRefGoogle Scholar
  9. Berger JR, Nath A (1997) HIV dementia and the basal ganglia. Intervirology 40:122–131CrossRefPubMedGoogle Scholar
  10. Berger JR, Nath A, Greenberg RN et al (2000) Cerebrovascular changes in the basal ganglia with HIV dementia. Neurology 54:921–926CrossRefPubMedGoogle Scholar
  11. Berrada F, Ma D, Michaud J et al (1995) Neuronal expression of human immunodeficiency virus type 1 env proteins in transgenic mice: distribution in the central nervous system and pathological alterations. J Virol 69:6770–6778PubMedPubMedCentralGoogle Scholar
  12. Bhaskaran K, Mussini C, Antinori A et al (2008) Changes in the incidence and predictors of human immunodeficiency virus-associated dementia in the era of highly active antiretroviral therapy. Ann Neurol 63:213–221. doi: 10.1002/ana.21225 CrossRefPubMedGoogle Scholar
  13. Bonsi P, Cuomo D, Martella G et al (2011) Centrality of striatal cholinergic transmission in basal ganglia function. Front Neuroanat 5:6. doi: 10.3389/fnana.2011.00006 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brew BJ, Rosenblum M, Cronin K, Price RW (1995) AIDS dementia complex and HIV-1 brain infection: clinical-virological correlations. Ann Neurol 38:563–570. doi: 10.1002/ana.410380404 CrossRefPubMedGoogle Scholar
  15. Buzy JM, Brenneman DE, Siegal FP et al (1989) Cerebrospinal fluid from cognitively impaired patient with acquired immunodeficiency syndrome shows gp120-like neuronal killing in vitro. Am J Med 87:361–362CrossRefPubMedGoogle Scholar
  16. Cashion MF, Banks WA, Bost KL, Kastin AJ (1999) Transmission routes of HIV-1 gp120 from brain to lymphoid tissues. Brain Res 822:26–33CrossRefPubMedGoogle Scholar
  17. Catani MV, Corasaniti MT, Navarra M et al (2000) gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem 74:2373–2379CrossRefPubMedGoogle Scholar
  18. Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13:976–986. doi: 10.1016/S1473-3099(13)70269-X CrossRefPubMedPubMedCentralGoogle Scholar
  19. Corboy JR, Buzy JM, Zink MC, Clements JE (1992) Expression directed from HIV long terminal repeats in the central nervous system of transgenic mice. Science 258:1804–1808CrossRefPubMedGoogle Scholar
  20. Costantini TW, Dang X, Coimbra R et al (2014) CHRFAM7A, a human-specific and partially duplicated α7-nicotinic acetylcholine receptor gene with the potential to specify a human-specific inflammatory response to injury. J Leukoc Biol. doi: 10.1189/jlb.4RU0814-381R PubMedPubMedCentralGoogle Scholar
  21. Cysique LA, Brew BJ (2011) Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirol 17:176–183. doi: 10.1007/s13365-011-0021-x CrossRefPubMedGoogle Scholar
  22. Cysique LA, Maruff P, Brew BJ (2004) Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol 10:350–357. doi: 10.1080/13550280490521078 CrossRefPubMedGoogle Scholar
  23. Dani JA, Lester RA (2001) Nicotinic acetylcholine receptors in neurons. In: eLS. John Wiley & Sons, LtdGoogle Scholar
  24. Davis CB, Dikic I, Unutmaz D et al (1997) Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med 186:1793–1798CrossRefPubMedPubMedCentralGoogle Scholar
  25. De Luca V, Likhodi O, Van Tol HHM et al (2006) Regulation of alpha7-nicotinic receptor subunit and alpha7-like gene expression in the prefrontal cortex of patients with bipolar disorder and schizophrenia. Acta Psychiatr Scand 114:211–215. doi: 10.1111/j.1600-0447.2006.00785.x CrossRefPubMedGoogle Scholar
  26. de Lucas-Cerrillo AM, Maldifassi MC, Arnalich F et al (2011) Function of partially duplicated human α7 nicotinic receptor subunit CHRFAM7A gene: potential implications for the cholinergic anti-inflammatory response. J Biol Chem 286:594–606. doi: 10.1074/jbc.M110.180067 CrossRefPubMedGoogle Scholar
  27. Desai M, Hu N, Byrd D, Yu Q (2013) Neuronal apoptosis in HIV-1-associated central nervous diseases and neuropathic pain. In: Rudner J (ed) Apoptosis. InTechGoogle Scholar
  28. Di Stefano M, Gray F, Leitner T, Chiodi F (1996) Analysis of ENV V3 sequences from HIV-1-infected brain indicates restrained virus expression throughout the disease. J Med Virol 49:41–48. doi: 10.1002/(SICI)1096-9071(199605)49:1<41::AID-JMV7>3.0.CO;2-K CrossRefPubMedGoogle Scholar
  29. Everall I, Barnes H, Spargo E, Lantos P (1995) Assessment of neuronal density in the putamen in human immunodeficiency virus (HIV) infection. Application of stereology and spatial analysis of quadrats. J Neurovirol 1:126–129CrossRefPubMedGoogle Scholar
  30. Gault J, Robinson M, Berger R et al (1998) Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 52:173–185. doi: 10.1006/geno.1998.5363 CrossRefPubMedGoogle Scholar
  31. Gelbard HA, James HJ, Sharer LR et al (1995) Apoptotic neurons in brains from paediatric patients with HIV-1 encephalitis and progressive encephalopathy. Neuropathol Appl Neurobiol 21:208–217CrossRefPubMedGoogle Scholar
  32. Ghafouri M, Amini S, Khalili K, Sawaya BE (2006) HIV-1 associated dementia: symptoms and causes. Retrovirology 3:28. doi: 10.1186/1742-4690-3-28 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gilbert M, Kirihara J, Mills J (1991) Enzyme-linked immunoassay for human immunodeficiency virus type 1 envelope glycoprotein 120. J Clin Microbiol 29:142–147PubMedPubMedCentralGoogle Scholar
  34. González-Scarano F, Martín-García J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81. doi: 10.1038/nri1527 CrossRefPubMedGoogle Scholar
  35. Grant I, Franklin DR, Deutsch R et al (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82:2055–2062. doi: 10.1212/WNL.0000000000000492 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Heaton RK, Franklin DR, Ellis RJ et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17:3–16. doi: 10.1007/s13365-010-0006-1 CrossRefPubMedGoogle Scholar
  37. Hesselgesser J, Halks-Miller M, DelVecchio V et al (1997) CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Curr Biol 7:112–121CrossRefPubMedGoogle Scholar
  38. Hesselgesser J, Taub D, Baskar P et al (1998) Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr Biol 8:595–598CrossRefPubMedGoogle Scholar
  39. Jana A, Pahan K (2004) Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J Neurosci Off J Soc Neurosci 24:9531–9540. doi: 10.1523/JNEUROSCI.3085-04.2004 CrossRefGoogle Scholar
  40. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2013) Global Report: UNAIDS report on global AIDS epidemic 2013.Google Scholar
  41. Jones MV, Bell JE, Nath A (2000) Immunolocalization of HIV envelope gp120 in HIV encephalitis with dementia. AIDS Lond Engl 14:2709–2713CrossRefGoogle Scholar
  42. Kaul M, Zheng J, Okamoto S et al (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892. doi: 10.1038/sj.cdd.4401623 CrossRefPubMedGoogle Scholar
  43. Kaul M, Ma Q, Medders KE et al (2007) HIV-1 coreceptors CCR5 and CXCR4 both mediate neuronal cell death but CCR5 paradoxically can also contribute to protection. Cell Death Differ 14:296–305. doi: 10.1038/sj.cdd.4402006 CrossRefPubMedGoogle Scholar
  44. Koneru R, Olive MF, Tyor WR (2014) Combined antiretroviral therapy reduces brain viral load and pathological features of HIV encephalitis in a mouse model. J Neurovirol 20:9–17. doi: 10.1007/s13365-013-0223-5 CrossRefPubMedGoogle Scholar
  45. Kong LY, Wilson BC, McMillian MK et al (1996) The effects of the HIV-1 envelope protein gp120 on the production of nitric oxide and proinflammatory cytokines in mixed glial cell cultures. Cell Immunol 172:77–83. doi: 10.1006/cimm.1996.0217 CrossRefPubMedGoogle Scholar
  46. Kure K, Weidenheim KM, Lyman WD, Dickson DW (1990) Morphology and distribution of HIV-1 gp41-positive microglia in subacute AIDS encephalitis. Pattern of involvement resembling a multisystem degeneration. Acta Neuropathol (Berl) 80:393–400CrossRefGoogle Scholar
  47. Lee C, Liu Q-H, Tomkowicz B et al (2003) Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signaling pathways. J Leukoc Biol 74:676–682. doi: 10.1189/jlb.0503206 CrossRefPubMedGoogle Scholar
  48. Lucey DR, VanCott TC, Loomis LD et al (1993) Measurement of cerebrospinal fluid antibody to the HIV-1 principal neutralizing determinant (V3 loop). J Acquir Immune Defic Syndr 6:994–1001PubMedGoogle Scholar
  49. Meucci O, Miller RJ (1996) gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci Off J Soc Neurosci 16:4080–4088Google Scholar
  50. Mothobi NZ, Brew BJ (2012) Neurocognitive dysfunction in the highly active antiretroviral therapy era. Curr Opin Infect Dis 25:4–9. doi: 10.1097/QCO.0b013e32834ef586 CrossRefPubMedGoogle Scholar
  51. Oh SK, Cruikshank WW, Raina J et al (1992) Identification of HIV-1 envelope glycoprotein in the serum of AIDS and ARC patients. J Acquir Immune Defic Syndr 5:251–256CrossRefPubMedGoogle Scholar
  52. Ohagen A, Devitt A, Kunstman KJ et al (2003) Genetic and functional analysis of full-length human immunodeficiency virus type 1 env genes derived from brain and blood of patients with AIDS. J Virol 77:12336–12345CrossRefPubMedPubMedCentralGoogle Scholar
  53. Okamoto S, Kang Y-J, Brechtel CW et al (2007) HIV/gp120 decreases adult neural progenitor cell proliferation via checkpoint kinase-mediated cell-cycle withdrawal and G1 arrest. Cell Stem Cell 1:230–236. doi: 10.1016/j.stem.2007.07.010 CrossRefPubMedGoogle Scholar
  54. Pillai SK, Pond SLK, Liu Y et al (2006) Genetic attributes of cerebrospinal fluid-derived HIV-1 env. Brain J Neurol 129:1872–1883. doi: 10.1093/brain/awl136 CrossRefGoogle Scholar
  55. Rolfs A, Schumacher HC (1990) Early findings in the cerebrospinal fluid of patients with HIV-1 infection of the central nervous system. N Engl J Med 323:418–419. doi: 10.1056/NEJM199008093230614 CrossRefPubMedGoogle Scholar
  56. Ruţă SM, Mătuşa R, Cernescu CC (1998) Cerebrospinal fluid Western blot profiles in the evolution of HIV-1 pediatric encephalopathy. Rom J Virol 49:61–71PubMedGoogle Scholar
  57. Rychert J, Strick D, Bazner S et al (2010) Detection of HIV gp120 in plasma during early HIV infection is associated with increased proinflammatory and immunoregulatory cytokines. AIDS Res Hum Retroviruses 26:1139–1145. doi: 10.1089/aid.2009.0290 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sacktor N, McDermott MP, Marder K et al (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8:136–142. doi: 10.1080/13550280290049615 CrossRefPubMedGoogle Scholar
  59. Santosuosso M, Righi E, Lindstrom V et al (2009) HIV-1 envelope protein gp120 is present at high concentrations in secondary lymphoid organs of individuals with chronic HIV-1 infection. J Infect Dis 200:1050–1053. doi: 10.1086/605695 CrossRefPubMedGoogle Scholar
  60. Toggas SM, Masliah E, Rockenstein EM et al (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367:188–193. doi: 10.1038/367188a0 CrossRefPubMedGoogle Scholar
  61. Trujillo JR, Navia BA, Worth J et al (1996) High levels of anti-HIV-1 envelope antibodies in cerebrospinal fluid as compared to serum from patients with AIDS dementia complex. J Acquir Immune Defic Syndr Hum Retrovirol Off Publ Int Retrovirol Assoc 12:19–25CrossRefGoogle Scholar
  62. van der Zanden EP, Hilbers FW, Verseijden C et al (2012) Nicotinic acetylcholine receptor expression and susceptibility to cholinergic immunomodulation in human monocytes of smoking individuals. Neuroimmunomodulation 19:255–265. doi: 10.1159/000335185 CrossRefPubMedGoogle Scholar
  63. von Giesen HJ, Wittsack HJ, Wenserski F et al (2001) Basal ganglia metabolite abnormalities in minor motor disorders associated with human immunodeficiency virus type 1. Arch Neurol 58:1281–1286CrossRefGoogle Scholar
  64. Wang Y, Xiao C, Indersmitten T et al (2014) The duplicated α7 subunits assemble and form functional nicotinic receptors with the full-length α7. J Biol Chem 289:26451–26463. doi: 10.1074/jbc.M114.582858 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19:152–168. doi: 10.1007/s11065-009-9102-5 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Xu Y, Kulkosky J, Acheampong E et al (2004) HIV-1-mediated apoptosis of neuronal cells: proximal molecular mechanisms of HIV-1-induced encephalopathy. Proc Natl Acad Sci U S A 101:7070–7075. doi: 10.1073/pnas.0304859101 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zheng J, Thylin MR, Ghorpade A et al (1999) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98:185–200CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2015

Authors and Affiliations

  • Félix M. Ramos
    • 1
  • Manuel Delgado-Vélez
    • 1
  • Ángel L. Ortiz
    • 2
  • Carlos A. Báez-Pagán
    • 1
  • Orestes Quesada
    • 3
  • José A. Lasalde-Dominicci
    • 1
  1. 1.Department of BiologyUniversity of Puerto RicoSan JuanPuerto Rico
  2. 2.Department of ChemistryUniversity of Puerto RicoSan JuanPuerto Rico
  3. 3.Department of Physical SciencesUniversity of Puerto RicoSan JuanPuerto Rico

Personalised recommendations