Advertisement

Journal of NeuroVirology

, Volume 22, Issue 2, pp 129–139 | Cite as

Microglia-derived HIV Nef+ exosome impairment of the blood–brain barrier is treatable by nanomedicine-based delivery of Nef peptides

  • A. D. RaymondEmail author
  • P. Diaz
  • S. Chevelon
  • M. Agudelo
  • A. Yndart-Arias
  • H. Ding
  • A. Kaushik
  • R. Dev Jayant
  • R. Nikkhah-Moshaie
  • U. Roy
  • S. Pilakka-Kanthikeel
  • M. P. Nair
Article

Abstract

The negative factor (Nef) of human immunodeficiency virus (HIV) is an accessory protein that is thought to be integral to HIV-associated immune- and neuroimmune pathogenesis. Here, we show that nef-transfected microglia-released Nef+ exosome (exNef) disrupts the apical blood–brain barrier (BBB) and that only nef-transfected microglia release Nef in exosomes. nef–gfp-transduced neurons and astrocytes release exosomes but did not release exNef in the extracellular space. Apical administration of exNef derived from nef-transfected 293T cells reduced transendothelial electrical resistance (TEER) and increased permeability of the BBB. Microglia-derived exNef applied to either the apical/basal BBB significantly reduced expression of the tight junction protein, ZO-1, suggesting a mechanism of exNef-mediated neuropathogenesis. Microglia exposed to exNef release elevated levels of Toll-like receptor-induced cytokines and chemokines IL-12, IL-8, IL-6, RANTES, and IL-17A. Magnetic nanoparticle delivery of Nef peptides containing the Nef myrisolation site across an in vitro BBB ultimately reduced nef-transfected microglia release of Nef exosomes and prevented the loss of BBB integrity and permeability as measured by TEER and dextran-FITC transport studies, respectively. Overall, we show that exNef is released from nef–gfp-transfected microglia; exNef disrupts integrity and permeability, and tight junctions of the BBB, and induces microglial cytokine/chemokine secretion. These exNef-mediated effects were significantly restricted by Nef peptides. Taken together, this study provides preliminary evidence of the role of exNef in HIV neuroimmune pathogenesis and the feasibility of a nanomedicine-based therapeutics targeting exNef to treat HIV-associated neuropathogenesis.

Keywords

Nef + exosomes BBB impairment Nanoparticle therapeutics 

Notes

Acknowledgments

This work was supported by grant awards 3R01DA027049-04S1 and 3R01DA02704 from the National Institute of Health.

Authors would like to thank Advanced Materials Engineering Research Institute (AMERI) at the College of Engineering and Computing of Florida International University for their support.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

13365_2015_397_Fig6_ESM.gif (168 kb)
Supplemental Figure 1 (S1)

Exosome preparation from nef-gfp-transfected CHME-5 cells were analyzed via TEM. a TEM image of crude microglia-derived exosomes preparation. b Profile of exosome size within preparation. (GIF 168 kb)

13365_2015_397_MOESM1_ESM.tif (172 kb)
High resolution (TIFF 171 kb)

References

  1. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345CrossRefPubMedGoogle Scholar
  2. Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer HC (2010) The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010:402593CrossRefPubMedPubMedCentralGoogle Scholar
  3. Birch MR, Learmont JC, Dyer WB, Deacon NJ, Zaunders JJ, Saksena N, Cunningham AL, Mills J, Sullivan JS (2001) An examination of signs of disease progression in survivors of the Sydney Blood Bank Cohort (SBBC). J Clin Virol 22:263–270CrossRefPubMedGoogle Scholar
  4. Campbell TD, Khan M, Huang MB, Bond VC, Powell MD (2008) HIV-1 Nef protein is secreted into vesicles that can fuse with target cells and virions. Ethn Dis 18:S2-14-19Google Scholar
  5. Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Hooker DJ, McPhee DA, Greenway AL, Ellett A, Chatfield C, Lawson VA, Crowe S, Maerz A, Sonza S, Learmont J, Sullivan JS, Cunningham A, Dwyer D, Dowton D, Mills J (1995) Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270:988–991CrossRefPubMedGoogle Scholar
  6. Ding H, Sagar V, Agudelo M, Pilakka-Kanthikeel S, Atluri VS, Raymond A, Samikkannu T, Nair MP (2014) Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation. Nanotechnology 25:055101CrossRefPubMedPubMedCentralGoogle Scholar
  7. El Andaloussi S, Lakhal S, Mager I, Wood MJ (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65:391–397CrossRefPubMedGoogle Scholar
  8. Fackler OT, Luo W, Geyer M, Alberts AS, Peterlin BM (1999) Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell 3:729–739CrossRefPubMedGoogle Scholar
  9. Fujii Y, Otake K, Tashiro M, Adachi A (1996a) Soluble Nef antigen of HIV-1 is cytotoxic for human CD4+ T cells. FEBS Lett 393:93–96CrossRefPubMedGoogle Scholar
  10. Fujii Y, Otake K, Tashiro M, Adachi A (1996b) Human immunodeficiency virus type 1 Nef protein on the cell surface is cytocidal for human CD4+ T cells. FEBS Lett 393:105–108CrossRefPubMedGoogle Scholar
  11. Fujii Y, Otake K, Tashiro M, Adachi A (1996c) In vitro cytocidal effects of human immunodeficiency virus type 1 Nef on unprimed human CD4+ T cells without MHC restriction. J Gen Virol 77(Pt 12):2943–2951CrossRefPubMedGoogle Scholar
  12. Greenway AL, Holloway G, McPhee DA (2000) HIV-1 Nef: a critical factor in viral-induced pathogenesis. Adv Pharmacol 48:299–343CrossRefPubMedGoogle Scholar
  13. Greenway AL, McPhee DA, Allen K, Johnstone R, Holloway G, Mills J, Azad A, Sankovich S, Lambert P (2002) Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J Virol 76:2692–2702CrossRefPubMedPubMedCentralGoogle Scholar
  14. Haller C, Rauch S, Fackler OT (2007) HIV-1 Nef employs two distinct mechanisms to modulate Lck subcellular localization and TCR induced actin remodeling. PLoS One 2:e1212CrossRefPubMedPubMedCentralGoogle Scholar
  15. Huang W, Eum SY, Andras IE, Hennig B, Toborek M (2009) PPARalpha and PPARgamma attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. FASEB J 23:1596–1606CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11:110–122CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liu X, Shah A, Gangwani MR, Silverstein PS, Fu M, Kumar A (2014) HIV-1 Nef induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors. Sci Rep 4:4450PubMedPubMedCentralGoogle Scholar
  18. Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, Perdicchio M, Marino ML, Federici C, Iessi E, Brambilla D, Venturi G, Lozupone F, Santinami M, Huber V, Maio M, Rivoltini L, Fais S (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4:e5219CrossRefPubMedPubMedCentralGoogle Scholar
  19. Luabeya MK, Dallasta LM, Achim CL, Pauza CD, Hamilton RL (2000) Blood-brain barrier disruption in simian immunodeficiency virus encephalitis. Neuropathol Appl Neurobiol 26:454–462CrossRefPubMedGoogle Scholar
  20. Mangino G, Percario ZA, Fiorucci G, Vaccari G, Acconcia F, Chiarabelli C, Leone S, Noto A, Horenkamp FA, Manrique S, Romeo G, Polticelli F, Geyer M, Affabris E (2007) HIV-1 Nef induces proinflammatory state in macrophages through its acidic cluster domain: involvement of TNF alpha receptor associated factor 2. PLoS One 6:e22982CrossRefGoogle Scholar
  21. Mangino G, Serra V, Borghi P, Percario ZA, Horenkamp FA, Geyer M, Affabris E (2012) Exogenous nef induces proinflammatory signaling events in murine macrophages. Viral Immunol 25:117–130CrossRefPubMedGoogle Scholar
  22. Mathivanan S, Ji H, Simpson RJ (2012) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920CrossRefGoogle Scholar
  23. Muratori C, Cavallin LE, Kratzel K, Tinari A, De Milito A, Fais S, D’Aloja P, Federico M, Vullo V, Fomina A, Mesri EA, Superti F, Baur AS (2009) Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 6:218–230CrossRefPubMedGoogle Scholar
  24. Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E, Guendel I, Sampey G, Dalby E, Iglesias-Ussel M, Popratiloff A, Hakami R, Kehn-Hall K, Young M, Subra C, Gilbert C, Bailey C, Romerio F, Kashanchi F (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288:20014–20033CrossRefPubMedPubMedCentralGoogle Scholar
  25. Olivetta E, Percario Z, Fiorucci G, Mattia G, Schiavoni I, Dennis C, Jager J, Harris M, Romeo G, Affabris E, Federico M (2003) HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. J Immunol 170:1716–1727CrossRefPubMedGoogle Scholar
  26. Pegtel DM, van de Garde MD, Middeldorp JM (2011) Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion. Biochim Biophys Acta 1809:715–721CrossRefPubMedGoogle Scholar
  27. Peng ZG, Hidajat K, Uddin MS (2004) Adsorption of bovine serum albumin on nanosized magnetic particles. J Colloid Interface Sci 271:277–283CrossRefPubMedGoogle Scholar
  28. Percario Z, Olivetta E, Fiorucci G, Mangino G, Peretti S, Romeo G, Affabris E, Federico M (2003) Human immunodeficiency virus type 1 (HIV-1) Nef activates STAT3 in primary human monocyte/macrophages through the release of soluble factors: involvement of Nef domains interacting with the cell endocytotic machinery. J Leukoc Biol 74:821–832CrossRefPubMedGoogle Scholar
  29. Persidsky Y, Gendelman HE (1997) Development of laboratory and animal model systems for HIV-1 encephalitis and its associated dementia. J Leukoc Biol 62:100–106PubMedGoogle Scholar
  30. Persidsky Y, Stins M, Way D, Witte MH, Weinand M, Kim KS, Bock P, Gendelman HE, Fiala M (1997) A model for monocyte migration through the blood–brain barrier during HIV-1 encephalitis. J Immunol 158:3499–3510PubMedGoogle Scholar
  31. Raymond AD, Campbell-Sims TC, Khan M, Lang M, Huang MB, Bond VC, Powell MD (2011) HIV Type 1 Nef is released from infected cells in CD45(+) microvesicles and is present in the plasma of HIV-infected individuals. AIDS Res Hum Retrovir 27:167–178CrossRefPubMedPubMedCentralGoogle Scholar
  32. Saiyed ZM, Gandhi NH, Nair MP (2009) AZT 5'-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells. J Neurovirol 15:343–347CrossRefPubMedGoogle Scholar
  33. Schaefer MR, Wonderlich ER, Roeth JF, Leonard JA, Collins KL (2008) HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS Pathog 4:e1000131CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–1228CrossRefPubMedGoogle Scholar
  35. Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, Hochberg FH, Breakefield XO, Weissleder R, Lee H (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18:1835–1840CrossRefPubMedPubMedCentralGoogle Scholar
  36. Shen B, Wu N, Yang JM, Gould SJ (2011) Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem 286:14383–14395CrossRefPubMedPubMedCentralGoogle Scholar
  37. Si Q, Kim MO, Zhao ML, Landau NR, Goldstein H, Lee S (2002) Vpr- and Nef-dependent induction of RANTES/CCL5 in microglial cells. Virology 301:342–353CrossRefPubMedGoogle Scholar
  38. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sol-Foulon N, Esnault C, Percherancier Y, Porrot F, Metais-Cunha P, Bachelerie F, Schwartz O (2004) The effects of HIV-1 Nef on CD4 surface expression and viral infectivity in lymphoid cells are independent of rafts. J Biol Chem 279:31398–31408CrossRefPubMedGoogle Scholar
  40. Stumptner-Cuvelette P, Morchoisne S, Dugast M, Le Gall S, Raposo G, Schwartz O, Benaroch P (2001) HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc Natl Acad Sci U S A 98:12144–12149CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18:1606–1614CrossRefPubMedPubMedCentralGoogle Scholar
  42. van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, Rourke SB, Holden J, McArthur JC, Gill MJ, Power C (2004) Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology 329:302–318CrossRefPubMedGoogle Scholar
  43. Zheng YH, Plemenitas A, Linnemann T, Fackler OT, Peterlin BM (2001) Nef increases infectivity of HIV via lipid rafts. Curr Biol 11:875–879CrossRefPubMedGoogle Scholar
  44. Zhong Y, Zhang B, Eum SY, Toborek M (2012) HIV-1 Tat triggers nuclear localization of ZO-1 via Rho signaling and cAMP response element-binding protein activation. J Neurosci 32:143–150CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM (2010) Exosomes: fit to deliver small RNA. Commun Integr Biol 3:447–450CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2015

Authors and Affiliations

  • A. D. Raymond
    • 1
    • 2
    Email author
  • P. Diaz
    • 1
  • S. Chevelon
    • 1
  • M. Agudelo
    • 1
  • A. Yndart-Arias
    • 1
    • 2
  • H. Ding
    • 2
  • A. Kaushik
    • 2
  • R. Dev Jayant
    • 2
  • R. Nikkhah-Moshaie
    • 3
  • U. Roy
    • 2
  • S. Pilakka-Kanthikeel
    • 1
  • M. P. Nair
    • 1
    • 2
  1. 1.Department of Immunology, Herbert Wertheim College of MedicineFlorida International UniversityMiamiUSA
  2. 2.Institute of Neuroimmune Pharmacology, Herbert Wertheim College of MedicineFlorida International UniversityMiamiUSA
  3. 3.Department of Mechanical and Materials Engineering, College of Engineering and Computing, Florida International UniversityMiamiUSA

Personalised recommendations