Journal of NeuroVirology

, Volume 22, Issue 1, pp 14–21 | Cite as

The brain’s Geppetto—microbes as puppeteers of neural function and behaviour?

  • Roman M. StillingEmail author
  • Timothy G. Dinan
  • John F. CryanEmail author
Mini Review


Research on the microbiome and its interaction with various host organs, including the brain, is increasingly gaining momentum. With more evidence establishing a comprehensive microbiota-gut-brain axis, questions have been raised as to the extent to which microbes influence brain physiology and behaviour. In parallel, there is a growing literature showing active behavioural manipulation in favour of the microbe for certain parasites. However, it seems unclear where the hidden majority of microbes are localised on the parasitism-mutualism spectrum. A long evolutionary history intimately connects host and microbiota, which complicates this classification. In this conceptual minireview, we discuss current hypotheses on host-microbe interaction and argue that novel experimental approaches and theoretical concepts, such as the hologenome theory, are necessary to incorporate transgenerational epigenetic inheritance of the microbiome into evolutionary theories.


Host behaviour Parasite Commensal Epigenetics Metagenome Host ecology Neurovirus Co-evolution 



The Alimentary Pharmabiotic Centre is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan (Grant Numbers 07/CE/B1368 and 12/RC/2273). R.M.S. is supported by the Irish Research Council (IRC) through a Government of Ireland Postdoctoral Fellowship (Grant Number GOIPD/2014/355). T. G. D. and J. F. C. are supported by SFI (Grant Number 07/CE/B1368 and 12/RC/2273). T. G. D. and J. F. C. are also supported by the Irish Health Research Board, the Department of Agriculture, Food and Fisheries and Forestry and Enterprise Ireland.

Conflict of interest

R.M.S. reports no conflict of interest. T.G.D. and J.F.C. are principal investigators in the Alimentary Pharmabiotic Centre, University College Cork. The Alimentary Pharmabiotic Centre has conducted research funded by Pfizer, GlaxoSmithKline, Proctor & Gamble, Mead Johnson, Suntory Wellness and Cremo. T.G.D. has been an invited speaker at meetings organised by Servier, Lundbeck, Janssen and AstraZeneca. J.F.C. has been an invited speaker at meetings organised by Mead Johnson, Yakult, Alkermes and Janssen.


  1. Alcock J, Maley CC, Aktipis CA (2014) Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays News Rev Mol Cell Dev Biol 36:940–949. doi: 10.1002/bies.201400071 CrossRefGoogle Scholar
  2. Bercik P, Verdu EF, Foster JA et al (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139:2102–2112.e1. doi: 10.1053/j.gastro.2010.06.063 PubMedCrossRefGoogle Scholar
  3. Bercik P, Denou E, Collins J et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609:609.e1–3. doi: 10.1053/j.gastro.2011.04.052 Google Scholar
  4. Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut-brain axis. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc 24:405–413. doi: 10.1111/j.1365-2982.2012.01906.x CrossRefGoogle Scholar
  5. Berer K, Mues M, Koutrolos M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541. doi: 10.1038/nature10554 PubMedCrossRefGoogle Scholar
  6. Biron DG, Bonhomme L, Coulon M, Øverli Ø (2014) Microbiomes, plausible players or not in alteration of host behavior. Front Microbiol 5:775. doi: 10.3389/fmicb.2014.00775 PubMedPubMedCentralGoogle Scholar
  7. Borre YE, O’Keeffe GW, Clarke G et al (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20:509–518. doi: 10.1016/j.molmed.2014.05.002 PubMedCrossRefGoogle Scholar
  8. Braniste V, Al-Asmakh M, Kowal C et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158. doi: 10.1126/scitranslmed.3009759 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brew BJ, Chan P (2014) Update on HIV dementia and HIV-associated neurocognitive disorders. Curr Neurol Neurosci Rep 14:468. doi: 10.1007/s11910-014-0468-2 PubMedCrossRefGoogle Scholar
  10. Brucker RM, Bordenstein SR (2012) Speciation by symbiosis. Trends Ecol Evol 27:443–451. doi: 10.1016/j.tree.2012.03.011 PubMedCrossRefGoogle Scholar
  11. Brucker RM, Bordenstein SR (2013) The capacious hologenome. Zoology (Jena, Germany) 116:260–261. doi: 10.1016/j.zool.2013.08.003 CrossRefGoogle Scholar
  12. Cao X, Lin P, Jiang P, Li C (2013) Characteristics of the gastrointestinal microbiome in children with autism spectrum disorder: a systematic review. Shanghai Arch Psychiatry 25:342–353PubMedPubMedCentralGoogle Scholar
  13. Chung CY, Alden SL, Funderburg NT et al (2014) Progressive proximal-to-distal reduction in expression of the tight junction complex in colonic epithelium of virally-suppressed HIV+ individuals. PLoS Pathog 10:e1004198. doi: 10.1371/journal.ppat.1004198 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Claesson MJ, Jeffery IB, Conde S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184. doi: 10.1038/nature11319 PubMedCrossRefGoogle Scholar
  15. Clarke G, Grenham S, Scully P et al (2013a) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673. doi: 10.1038/mp.2012.77 PubMedCrossRefGoogle Scholar
  16. Clarke G, Grenham S, Scully P et al (2013b) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673. doi: 10.1038/mp.2012.77 PubMedCrossRefGoogle Scholar
  17. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742. doi: 10.1038/nrmicro2876 PubMedCrossRefGoogle Scholar
  18. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. doi: 10.1038/nrn3346 PubMedCrossRefGoogle Scholar
  19. Decaestecker E, Gaba S, Raeymaekers JAM et al (2007) Host-parasite “Red Queen” dynamics archived in pond sediment. Nature 450:870–873. doi: 10.1038/nature06291 PubMedCrossRefGoogle Scholar
  20. Dheilly NM, Maure F, Ravallec M et al (2015) Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proc R Soc Lond B Biol Sci 282:20142773. doi: 10.1098/rspb.2014.2773 CrossRefGoogle Scholar
  21. Diaz Heijtz R, Wang S, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052. doi: 10.1073/pnas.1010529108 PubMedCrossRefGoogle Scholar
  22. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry. doi: 10.1016/j.biopsych.2013.05.001 Google Scholar
  23. Dinan TG, Stilling RM, Stanton C, Cryan JF (2015) Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res 63:1–9. doi: 10.1016/j.jpsychires.2015.02.021 PubMedCrossRefGoogle Scholar
  24. El Aidy S, Dinan TG, Cryan JF (2014) Immune modulation of the brain-gut-microbe axis. Front Microbiol 5:146. doi: 10.3389/fmicb.2014.00146 PubMedPubMedCentralGoogle Scholar
  25. El Aidy S, Dinan TG, Cryan JF (2015) Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther. doi: 10.1016/j.clinthera.2015.03.002 PubMedGoogle Scholar
  26. Fitzpatrick BM (2014) Symbiote transmission and maintenance of extra-genomic associations. Front Microbiol 5:46. doi: 10.3389/fmicb.2014.00046 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Flegr J (2013) Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma–human model in studying the manipulation hypothesis. J Exp Biol 216:127–133. doi: 10.1242/jeb.073635
  28. Foster JA, Neufeld K-AM (2013) Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312. doi: 10.1016/j.tins.2013.01.005 PubMedCrossRefGoogle Scholar
  29. Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11:e1001631. doi: 10.1371/journal.pbio.1001631 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gilbert SF (2014) A holobiont birth narrative: the epigenetic transmission of the human microbiome. Front Genet 5:282. doi: 10.3389/fgene.2014.00282 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gilbert SF, McDonald E, Boyle N et al (2010) Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy. Philos Trans R Soc B Biol Sci 365:671–678. doi: 10.1098/rstb.2009.0245 CrossRefGoogle Scholar
  32. Hohorst W, Graefe G (1961) Ameisen—obligatorische Zwischenwirte des Lanzettegels (Dicrocoelium dendriticum). Naturwissenschaften 48:229–230. doi: 10.1007/BF00597502 CrossRefGoogle Scholar
  33. Hughes DP, Brodeur J, Thomas F (2012) Host manipulation by parasites. Oxford University PressGoogle Scholar
  34. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. doi: 10.1038/nature11234 CrossRefGoogle Scholar
  35. Jackson AC (2015) Diabolical effects of rabies encephalitis. J Neurovirol. doi: 10.1007/s13365-015-0351-1
  36. Jašarević E, Rodgers AB, Bale TL (2015) A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiol Stress 1:81–88. doi: 10.1016/j.ynstr.2014.10.005 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jeffery IB, O’Toole PW, Öhman L et al (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61:997–1006. doi: 10.1136/gutjnl-2011-301501 PubMedCrossRefGoogle Scholar
  38. Kennedy PJ, Clarke G, O’Neill A, et al (2013) Cognitive performance in irritable bowel syndrome: evidence of a stress-related impairment in visuospatial memory. Psychol Med 1–14. doi:  10.1017/S0033291713002171
  39. Kjartansdóttir KR, Friis-Nielsen J, Asplund M et al (2015) Traces of ATCV-1 associated with laboratory component contamination. Proc Natl Acad Sci U S A 112:E925–926. doi: 10.1073/pnas.1423756112 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kodaman N, Pazos A, Schneider BG et al (2014) Human and Helicobacter pylori coevolution shapes the risk of gastric disease. Proc Natl Acad Sci U S A 111:1455–1460. doi: 10.1073/pnas.1318093111 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lee YK, Mazmanian SK (2014) Microbial learning lessons: SFB educate the immune system. Immunity 40:457–459. doi: 10.1016/j.immuni.2014.04.002 PubMedCrossRefGoogle Scholar
  42. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108(Suppl 1):4615–4622. doi: 10.1073/pnas.1000082107 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Li J, Jia H, Cai X et al (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841. doi: 10.1038/nbt.2942 PubMedCrossRefGoogle Scholar
  44. Liow LH, Van Valen L, Stenseth NC (2011) Red Queen: from populations to taxa and communities. Trends Ecol Evol 26:349–358. doi: 10.1016/j.tree.2011.03.016 PubMedCrossRefGoogle Scholar
  45. Lizé A, McKay R, Lewis Z (2013) Gut microbiota and kin recognition. Trends Ecol Evol 28:325–326. doi: 10.1016/j.tree.2012.10.013 PubMedCrossRefGoogle Scholar
  46. Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays News Rev Mol Cell Dev Biol 33:574–581. doi: 10.1002/bies.201100024 CrossRefGoogle Scholar
  47. Lyte M (2013) Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 9:e1003726. doi: 10.1371/journal.ppat.1003726 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lyte M (2014) Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Biol 817:3–24. doi: 10.1007/978-1-4939-0897-4_1 PubMedCrossRefGoogle Scholar
  49. Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125:926–938. doi: 10.1172/JCI76304 PubMedCrossRefGoogle Scholar
  50. McFall-Ngai M, Hadfield MG, Bosch TCG et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci 110:3229–3236. doi: 10.1073/pnas.1218525110 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Messaoudi M, Lalonde R, Violle N et al (2011a) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755–764. doi: 10.1017/S0007114510004319 PubMedCrossRefGoogle Scholar
  52. Messaoudi M, Violle N, Bisson J-F et al (2011b) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2:256–261. doi: 10.4161/gmic.2.4.16108 PubMedCrossRefGoogle Scholar
  53. Mielcarz DW, Kasper LH (2015) The gut microbiome in multiple sclerosis. Curr Treat Options Neurol 17:344. doi: 10.1007/s11940-015-0344-7 PubMedCrossRefGoogle Scholar
  54. Montiel-Castro, Augusto J, Baez-Yanez et al (2014) Social neuroeconomics: the influence of microbiota in partner-choice and sociality. Curr Pharm Des 20:4774–4783PubMedCrossRefGoogle Scholar
  55. Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G (2013) The microbiota–gut–brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci 7:70. doi: 10.3389/fnint.2013.00070 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Moon C, Baldridge MT, Wallace MA et al (2015) Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature. doi: 10.1038/nature14139 PubMedCentralGoogle Scholar
  57. Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–e119. doi: 10.1111/j.1365-2982.2010.01620.x PubMedCrossRefGoogle Scholar
  58. O’Mahony SM, Marchesi JR, Scully P et al (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65:263–267. doi: 10.1016/j.biopsych.2008.06.026 PubMedCrossRefGoogle Scholar
  59. Ochoa-Repáraz J, Kasper LH (2014) Gut microbiome and the risk factors in central nervous system autoimmunity. FEBS Lett 588:4214–4222. doi: 10.1016/j.febslet.2014.09.024 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ochoa-Repáraz J, Mielcarz DW, Ditrio LE et al (2009) Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol (Baltimore Md) 183:6041–6050. doi: 10.4049/jimmunol.0900747 Google Scholar
  61. Ochoa-Repáraz J, Mielcarz DW, Begum-Haque S, Kasper LH (2011) Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 69:240–247. doi: 10.1002/ana.22344 PubMedCrossRefGoogle Scholar
  62. Ogbonnaya ES, Clarke G, Shanahan F et al (2015) Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry. doi: 10.1016/j.biopsych.2014.12.023 PubMedGoogle Scholar
  63. Öhman L, Törnblom H, Simrén M (2015) Crosstalk at the mucosal border: importance of the gut microenvironment in IBS. Nat Rev Gastroenterol Hepatol 12:36–49. doi: 10.1038/nrgastro.2014.200 PubMedCrossRefGoogle Scholar
  64. Phillips AC, Carroll D, Khan N, Moss P (2008) Cytomegalovirus is associated with depression and anxiety in older adults. Brain Behav Immun 22:52–55. doi: 10.1016/j.bbi.2007.06.012 PubMedCrossRefGoogle Scholar
  65. Ponton F, Lebarbenchon C, Lef|[egrave]|vre T et al (2006) Parasitology: parasite survives predation on its host. Nature 440:756–756. doi: 10.1038/440756a PubMedCrossRefGoogle Scholar
  66. Romig T, Lucius R, Frank W (1980) Cerebral larvae in the second intermediate host of Dicrocoelium dendriticum (Rudolphi, 1819) and Dicrocoelium hospes Looss, 1907 (Trematodes, Dicrocoeliidae). Z Parasitenkd (Berlin, Germany) 63:277–286CrossRefGoogle Scholar
  67. Rook GA (2013) Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci U S A 110:18360–18367. doi: 10.1073/pnas.1313731110 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Rook GAW, Lowry CA, Raison CL (2013) Microbial “Old Friends”, immunoregulation and stress resilience. Evol Med Public Health 2013:46–64. doi: 10.1093/emph/eot004 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rook GAW, Raison CL, Lowry CA (2014) Microbiota, immunoregulatory old friends and psychiatric disorders. Adv Exp Med Biol 817:319–356. doi: 10.1007/978-1-4939-0897-4_15 PubMedCrossRefGoogle Scholar
  70. Rosenberg E, Koren O, Reshef L et al (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362. doi: 10.1038/nrmicro1635 PubMedCrossRefGoogle Scholar
  71. Rosenberg E, Sharon G, Zilber-Rosenberg I (2009) The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol 11:2959–2962. doi: 10.1111/j.1462-2920.2009.01995.x PubMedCrossRefGoogle Scholar
  72. Scheperjans F, Aho V, Pereira PAB et al (2014) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord Off J Mov Disord Soc. doi: 10.1002/mds.26069 Google Scholar
  73. Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238. doi: 10.1038/nrmicro2974 PubMedCrossRefGoogle Scholar
  74. Stilling RM, Bordenstein SR, Dinan TG, Cryan JF (2014a) Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front Cell Infect Microbiol 4:147. doi: 10.3389/fcimb.2014.00147 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Stilling RM, Dinan TG, Cryan JF (2014b) Microbial genes, brain & behaviour—epigenetic regulation of the gut-brain axis. Genes Brain Behav 13:69–86. doi: 10.1111/gbb.12109 PubMedCrossRefGoogle Scholar
  76. Sweatt JD (2013) The emerging field of neuroepigenetics. Neuron 80:624–632. doi: 10.1016/j.neuron.2013.10.023 PubMedCrossRefGoogle Scholar
  77. Tillisch K, Labus J, Kilpatrick L et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394–1401.e4. doi: 10.1053/j.gastro.2013.02.043 PubMedCrossRefGoogle Scholar
  78. Toh MC, Allen-Vercoe E (2015) The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts. Microb Ecol Health Dis 26:26309PubMedGoogle Scholar
  79. Tung J, Barreiro LB, Burns MB et al (2015) Social networks predict gut microbiome composition in wild baboons. eLife 4:e05224. doi: 10.7554/eLife.05224 Google Scholar
  80. Van Valen L (1973) An evolutionary law. Evol Theory 1:1–30Google Scholar
  81. Vyboh K, Jenabian M-A, Mehraj V, Routy J-P (2015) HIV and the gut microbiota, partners in crime: breaking the vicious cycle to unearth new therapeutic targets. J Immunol Res 2015:614127. doi: 10.1155/2015/614127 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Wang Y, Kasper LH (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun 38:1–12. doi: 10.1016/j.bbi.2013.12.015 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Yolken RH, Torrey EF (2008) Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry 13:470–479. doi: 10.1038/mp.2008.5 PubMedCrossRefGoogle Scholar
  84. Yolken RH, Jones-Brando L, Dunigan DD et al (2014) Chlorovirus ATCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice. Proc Natl Acad Sci 111:16106–16111. doi: 10.1073/pnas.1418895111 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Yolken RH, Jones-Brando L, Dunigan DD et al (2015) Reply to Kjartansdóttir et al.: chlorovirus ATCV-1 findings not explained by contamination. Proc Natl Acad Sci U S A 112:E927. doi: 10.1073/pnas.1424665112 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735. doi: 10.1111/j.1574-6976.2008.00123.x PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2015

Authors and Affiliations

  1. 1.Alimentary Pharmabiotic CentreUniversity College CorkCorkIreland
  2. 2.Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
  3. 3.Department of PsychiatryUniversity College CorkCorkIreland

Personalised recommendations