Journal of NeuroVirology

, Volume 21, Issue 2, pp 159–173 | Cite as

Neurological sequelae induced by alphavirus infection of the CNS are attenuated by treatment with the glutamine antagonist 6-diazo-5-oxo-l-norleucine

  • Michelle C. Potter
  • Victoria K. Baxter
  • Robert W. Mathey
  • Jesse Alt
  • Camilo Rojas
  • Diane E. GriffinEmail author
  • Barbara S. SlusherEmail author


Recovery from encephalomyelitis induced by infection with mosquito-borne alphaviruses is associated with a high risk of lifelong debilitating neurological deficits. Infection of mice with the prototypic alphavirus, Sindbis virus, provides an animal model with which to study disease mechanisms and examine potential therapeutics. Infectious virus is cleared from the brain within a week after infection, but viral RNA is cleared slowly and persists for the life of the animal. However, no studies have examined the effect of infection on neurocognitive function over time. In the present study, we examined neurocognitive function at different phases of infection in 5-week-old C57BL/6 mice intranasally inoculated with Sindbis virus. At the peak of active virus infection, mice demonstrated hyperactivity, decreased anxiety, and marked hippocampal-dependent memory deficits, the latter of which persisted beyond clearance of infectious virus and resolution of clinical signs of disease. Previous studies indicate that neuronal damage during alphavirus encephalomyelitis is primarily due to inflammatory cell infiltration and glutamate excitotoxicity rather than directly by virus infection. Therefore, mice were treated with 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist that can suppress both the immune response and excitotoxicity. Treatment with DON decreased inflammatory cell infiltration and cell death in the hippocampus and partially prevented development of clinical signs and neurocognitive impairment despite the presence of infectious virus and high viral RNA levels. This study presents the first report of neurocognitive sequelae in mice with alphavirus encephalomyelitis and provides a model system for further elucidation of the pathogenesis of virus infection and assessment of potential therapies.


Sindbis virus Alphavirus Encephalomyelitis Fear conditioning Hippocampus 6-Diazo-5-oxo-L-norleucine (DON) 



The following grants were used to fund this research: NIH grants R01 NS038932 (DEG), R01 NS087539 (DEG), T32 8T32OD011089 (VKB), P30 MH075673 (BSS), and R03 DA032470 (BSS), as well as a pilot grant from the Brain Science Institute of Johns Hopkins University School of Medicine. The funding sources played no role in the conduct of the research, preparation of the paper, or decision to submit the article for publication. The authors would like to thank Joseph Mankowski, Kelly Metcalf Pate, Lisa Mangus, and Claire Lyons along with the Retrovirus group at Johns Hopkins University for the use of and assistance with their microscope and imaging software. We would additionally like to express our appreciation to Sivabalan Manivannan for his assistance in preparing the DON stock solution. The authors declare no competing financial interests.

Supplementary material

13365_2015_314_Fig7_ESM.gif (117 kb)
Fig. S1

Gastrointestinal toxicity associated with high dose (0.6 mg/kg) DON treatment. Representative photomicrographs of hematoxylin & eosin-stained large intestine from (a) untreated, mock-infected and (b) high dose (0.6 mg/kg) DON, mock-infected mice at 7 DPI. High dose DON-treatment resulted in intestinal dilatation with loss of columnar epithelium and decreased cellularity (100× magnification; scale bar = 500 μm). (c) SINV-infected mice receiving high dose (0.6 mg/kg) DON regained body weight lost by 28 DPI (N = 3-4 mice per group) (JPEG 707 kb)

13365_2015_314_MOESM1_ESM.tif (433 kb)
High resolution image (TIFF 433 kb)


  1. Adhikari A (2014) Distributed circuits underlying anxiety. Front Behav Neurosci 8:112. doi: 10.3389/fnbeh.2014.00112 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Amaral DC, Rachid MA, Vilela MC, Campos RD, Ferreira GP, Rodrigues DH, Lacerda-Queiroz N, Miranda AS, Costa VV, Campos MA, Kroon EG, Teixeira MM, Teixeira AL (2011) Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice. J Neuroinflammation 8:23. doi: 10.1186/1742-2094-8-23 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Binder GK, Griffin DE (2001) Interferon-γ-mediated site-specific clearance of alphavirus from CNS neurons. Science 293:303–306. doi: 10.1126/science.1059742 CrossRefPubMedGoogle Scholar
  4. Bruyn HB, Lennette EH (1953) Western equine encephalitis in infants; a report on three cases with sequelae. Calif Med 79:362–366PubMedCentralPubMedGoogle Scholar
  5. Colombo SL, Palacios-Callender M, Frakich N, De Leon J, Schmitt CA, Boorn L, Davis N, Moncada S (2010) Anaphase-promoting complex/cyclosome-Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes. Proc Natl Acad Sci U S A 107:18868–18873. doi: 10.1073/pnas.1012362107 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Crawley JN (2007) What’s wrong with my mouse? : behavioral phenotyping of transgenic and knockout mice, 2nd edn. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  7. Earhart RH, Koeller JM, Davis HL (1982) Phase I trial of 6-diazo-5-oxo-L-norleucine (DON) administered by 5-day courses. Cancer Treat Rep 66:1215–1217PubMedGoogle Scholar
  8. Earhart RH, Amato DJ, Chang AY, Borden EC, Shiraki M, Dowd ME, Comis RL, Davis TE, Smith TJ (1990) Phase II trial of 6-diazo-5-oxo-L-norleucine versus aclacinomycin-A in advanced sarcomas and mesotheliomas. Invest New Drugs 8:113–119CrossRefPubMedGoogle Scholar
  9. Earnest MP, Goolishian HA, Calverley JR, Hayes RO, Hill HR (1971) Neurologic, intellectual, and psychologic sequelae following western encephalitis. A follow-up study of 35 cases. Neurology 21:969–974CrossRefPubMedGoogle Scholar
  10. Finley KH, Longshore WA Jr, Palmer RJ, Cook RE, Riggs N (1955) Western equine and St. Louis encephalitis; preliminary report of a clinical follow-up study in California. Neurology 5:223–235CrossRefPubMedGoogle Scholar
  11. Fitting S, Ignatowska-Jankowska BM, Bull C, Skoff RP, Lichtman AH, Wise LE, Fox MA, Su J, Medina AE, Krahe TE, Knapp PE, Guido W, Hauser KF (2013) Synaptic dysfunction in the hippocampus accompanies learning and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice. Biol Psychiatry 73:443–453. doi: 10.1016/j.biopsych.2012.09.026 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Goeldner C, Reiss D, Wichmann J, Kieffer BL, Ouagazzal A-M (2009) Activation of nociceptin opioid peptide (NOP) receptor impairs contextual fear learning in mice through glutamatergic mechanisms. Neurobiol Learn Mem 91:393–401. doi: 10.1016/j.nlm.2008.12.001 CrossRefPubMedGoogle Scholar
  13. Gould TJ, McCarthy MM, Keith RA (2002) MK-801 disrupts acquisition of contextual fear conditioning but enhances memory consolidation of cued fear conditioning. Behav Pharmacol 13:287–294CrossRefPubMedGoogle Scholar
  14. Greene IP, Lee E-Y, Prow N, Ngwang B, Griffin D (2008) Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection. Proc Natl Acad Sci U S A 105:3575–3580. doi: 10.1073/pnas.0712390105 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Griffin DE (2010) Emergence and re-emergence of viral diseases of the central nervous system. Prog Neurobiol 91:95–101. doi: 10.1016/j.pneurobio.2009.12.003 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Griffin DE (2013) Alphaviruses. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 652–686Google Scholar
  17. Gubler DJ (2002) The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33:330–342CrossRefPubMedGoogle Scholar
  18. Havert MB, Schofield B, Griffin DE, Irani DN (2000) Activation of divergent neuronal cell death pathways in different target cell populations during neuroadapted sindbis virus infection of mice. J Virol 74:5352–5356. doi: 10.1128/JVI. 74.11.5352-5356.2000 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Holt W, Maren S (1999) Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. J Neurosci 19:9054–9062PubMedGoogle Scholar
  20. Jackson AC, Moench TR, Griffin DE, Johnson RT (1987) The pathogenesis of spinal cord involvement in the encephalomyelitis of mice caused by neuroadapted Sindbis virus infection. Lab Invest 56:418–423PubMedGoogle Scholar
  21. Jurgens HA, Amancherla K, Johnson RW (2012) Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J Neurosci 32:3958–3968. doi: 10.1523/JNEUROSCI. 6389-11.2012 CrossRefPubMedCentralPubMedGoogle Scholar
  22. Kim JJ, Jung MW (2006) Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev 30:188–202. doi: 10.1016/j.neubiorev.2005.06.005 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Kimura T, Griffin DE (2003) Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus. Virology 311:28–39. doi: 10.1016/S0042-6822(03)00110-7 CrossRefPubMedGoogle Scholar
  24. Kovach JS, Eagan RT, Powis G, Rubin J, Creagan ET, Moertel CG (1981) Phase I and pharmacokinetic studies of DON. Cancer Treat Rep 65:1031–1036PubMedGoogle Scholar
  25. Lambrechts L, Scott TW, Gubler DJ (2010) Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4:e646. doi: 10.1371/journal.pntd.0000646 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Levine B, Griffin DE (1992) Persistence of viral RNA in mouse brains after recovery from acute alphavirus encephalitis. J Virol 66:6429–6435PubMedCentralPubMedGoogle Scholar
  27. Levine B, Hardwick JM, Trapp BD, Crawford TO, Bollinger RC, Griffin DE (1991) Antibody-mediated clearance of alphavirus infection from neurons. Science 254:856–860CrossRefPubMedGoogle Scholar
  28. Logue SF, Paylor R, Wehner JM (1997) Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci 111:104–113CrossRefPubMedGoogle Scholar
  29. Lustig S, Jackson AC, Hahn CS, Griffin DE, Strauss EG, Strauss JH (1988) Molecular basis of Sindbis virus neurovirulence in mice. J Virol 62:2329–2336PubMedCentralPubMedGoogle Scholar
  30. Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. 1–12. doi:  10.1038/nrn3492
  31. Marlatt MW, Potter MC, Lucassen PJ, van Praag H (2012) Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Devel Neurobio 72:943–952. doi: 10.1002/dneu.22009 CrossRefGoogle Scholar
  32. McArthur JC, Steiner J, Sacktor N, Nath A (2010) HIV-associated neurocognitive disorders: “mind the gap. Ann Neurol NA–NA. doi: 10.1002/ana.22053 Google Scholar
  33. Melnikova T, Savonenko A, Wang Q, Liang X, Hand T, Wu L, Kaufmann WE, Vehmas A, Andreasson KI (2006) Cycloxygenase-2 activity promotes cognitive deficits but not increased amyloid burden in a model of Alzheimer’s disease in a sex-dimorphic pattern. Neuroscience 141:1149–1162. doi: 10.1016/j.neuroscience.2006.05.001 CrossRefPubMedGoogle Scholar
  34. Metcalf TU, Griffin DE (2011) Alphavirus-induced encephalomyelitis: antibody-secreting cells and viral clearance from the nervous system. J Virol 85:11490–11501. doi: 10.1128/JVI. 05379-11 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Millichap JG (2008) Etiologic classification of attention-deficit/hyperactivity disorder. Pediatrics 121:e358–e365. doi: 10.1542/peds. 2007-1332 CrossRefPubMedGoogle Scholar
  36. Nadler JV, Perry BW, Cotman CW (1978) Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271:676–677CrossRefPubMedGoogle Scholar
  37. Nargi-Aizenman JL, Havert MB, Zhang M, Irani DN, Rothstein JD, Griffin DE (2004) Glutamate receptor antagonists protect from virus-induced neural degeneration. Ann Neurol 55:541–549. doi: 10.1002/ana.20033 CrossRefPubMedGoogle Scholar
  38. Newsholme EA, Crabtree B, Ardawi MS (1985) Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol 70:473–489CrossRefPubMedGoogle Scholar
  39. Nozyce ML (2006) A behavioral and cognitive profile of clinically stable HIV-infected children. Pediatrics 117:763–770. doi: 10.1542/peds. 2005-0451 CrossRefPubMedGoogle Scholar
  40. Okun E, Griffioen K, Barak B, Roberts NJ, Castro K, Pita MA, Cheng A, Mughal MR, Wan R, Ashery U, Mattson MP (2010) Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 107:15625–15630. doi: 10.1073/pnas.1005807107 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Olney JW, Fuller T, de Gubareff T (1979) Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res 176:91–100CrossRefPubMedGoogle Scholar
  42. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285CrossRefPubMedGoogle Scholar
  43. Phillips RG, LeDoux JE (1994) Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn Mem 1:34–44. doi: 10.1101/lm.1.1.34 PubMedGoogle Scholar
  44. Potter MC, Yuan C, Ottenritter C, Mughal M, van Praag H (2010) Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr 2:RRN1201. doi: 10.1371/currents.RRN1201Google Scholar
  45. Potter MC, Figuera-Losada M, Rojas C, Slusher BS (2013) Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 8:594–607. doi: 10.1007/s11481-013-9442-z CrossRefPubMedCentralPubMedGoogle Scholar
  46. Provenzale JM, vanLandingham KE, Lewis DV, Mukundan S, White LE (2008) Extrahippocampal involvement in human herpesvirus 6 encephalitis depicted at MR imaging. Radiology 249:955–963Google Scholar
  47. Rowell JFJ, Griffin DED (1999) The inflammatory response to nonfatal Sindbis virus infection of the nervous system is more severe in SJL than in BALB/c mice and is associated with low levels of IL-4 mRNA and high levels of IL-10-producing CD4+ T cells. J Immunol 162:1624–1632PubMedGoogle Scholar
  48. Rudy JW (1993) Contextual conditioning and auditory cue conditioning dissociate during development. Behav Neurosci 107:887–891CrossRefPubMedGoogle Scholar
  49. Sanders MJ, Wiltgen BJ, Fanselow MS (2003) The place of the hippocampus in fear conditioning. Eur J Pharmacol 463:217–223. doi: 10.1016/S0014-2999(03)01283-4 CrossRefPubMedGoogle Scholar
  50. Shelton LM, Huysentruyt LC, Seyfried TN (2010) Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int J Cancer 127:2478–2485. doi: 10.1002/ijc.25431 CrossRefPubMedCentralPubMedGoogle Scholar
  51. Shijie J, Takeuchi H, Yawata I, Harada Y, Sonobe Y, Doi Y, Liang J, Hua L, Yasuoka S, Zhou Y, Noda M, Kawanokuchi J, Mizuno T, Suzumura A (2009) Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. Tohoku J Exp Med 217:87–92CrossRefPubMedGoogle Scholar
  52. Silverman MA, Misasi J, Smole S, Feldman HA, Cohen AB, Santagata S, McManus M, Ahmed AA (2013) Eastern equine encephalitis in children, Massachusetts and New Hampshire, USA, 1970–2010. Emerg Infect Dis 19:194–201. doi: 10.3201/eid1902.120039 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Sklaroff RB, Casper ES, Magill GB, Young CW (1980) Phase I study of 6-diazo-5-oxo-L-norleucine (DON). Cancer Treat Rep 64:1247–1251PubMedGoogle Scholar
  54. Souba WW (1993) Glutamine and cancer. Ann Surg 218:715–728CrossRefPubMedCentralPubMedGoogle Scholar
  55. Steele KE, Reed DS, Glass PJ, Hart MK, Ludwig GV, Pratt WD, Parker MD, Smith JF (2007) Alphavirus encephalitides. In: Dembek ZF (ed) Medical aspects of biological warfare. Office of the Surgeon General, US Army Medical Department Center and School, Borden Institute, Washington, pp 1–30Google Scholar
  56. Umpierre AD, Remigio GJ, Dahle EJ, Bradford K, Alex AB, Smith MD, West PJ, White HS, Wilcox KS (2014) Impaired cognitive ability and anxiety-like behavior following acute seizures in the Theiler’s virus model of temporal lobe epilepsy. Neurobiol Dis 64:98–106. doi: 10.1016/j.nbd.2013.12.015 CrossRefPubMedGoogle Scholar
  57. van den Hurk AF, Ritchie SA, Mackenzie JS (2009) Ecology and geographical expansion of Japanese encephalitis virus. Annu Rev Entomol 54:17–35. doi: 10.1146/annurev.ento.54.110807.090510 CrossRefPubMedGoogle Scholar
  58. Villari P, Spielman A, Komar N, McDowell M, Timperi RJ (1995) The economic burden imposed by a residual case of eastern encephalitis. Am J Trop Med Hyg 52:8–13PubMedGoogle Scholar
  59. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–882. doi: 10.1016/j.immuni.2011.09.021 CrossRefPubMedCentralPubMedGoogle Scholar
  60. Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antiviral Res 85:328–345. doi: 10.1016/j.antiviral.2009.10.008 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Weaver SC, Salas R, Rico-Hesse R, Ludwig GV, Oberste MS, Boshell J, Tesh RB (1996) Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. VEE Study Group Lancet 348:436–440Google Scholar
  62. Wiltgen BJ (2006) Context fear learning in the absence of the hippocampus. J Neurosci 26:5484–5491. doi: 10.1523/JNEUROSCI. 2685-05.2006 CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2015

Authors and Affiliations

  • Michelle C. Potter
    • 1
    • 2
  • Victoria K. Baxter
    • 3
    • 6
  • Robert W. Mathey
    • 1
  • Jesse Alt
    • 1
  • Camilo Rojas
    • 1
    • 3
  • Diane E. Griffin
    • 6
    Email author
  • Barbara S. Slusher
    • 1
    • 2
    • 4
    • 5
    Email author
  1. 1.Brain Science InstituteJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of PsychiatryJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA
  6. 6.W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations