Journal of NeuroVirology

, Volume 21, Issue 2, pp 105–112 | Cite as

Association between brain volumes and HAND in cART-naïve HIV+ individuals from Thailand

  • Jodi M. HeapsEmail author
  • Pasiri Sithinamsuwan
  • Robert Paul
  • Sukalaya Lerdlum
  • Mantana Pothisri
  • David Clifford
  • Somporn Tipsuk
  • Stephanie Catella
  • Edgar Busovaca
  • James L. K. Fletcher
  • Benjamin Raudabaugh
  • Silvia Ratto-Kim
  • Victor Valcour
  • Jintanat Ananworanich
  • on behalf of the SEARCH 007/011 study groups


This study aimed to determine the effects of human immunodeficiency virus (HIV) on brain structure in HIV-infected individuals with and without HIV-associated neurocognitive disorders (HAND). Twenty-nine HIV-uninfected controls, 37 HIV+, treatment-naïve, individuals with HAND (HIV+HAND+; 16 asymptomatic neurocognitive impairment (ANI), 12 mild neurocognitive disorder (MND), and 9 HIV-associated dementia HAD), and 37 HIV+, treatment-naïve, individuals with normal cognitive function (HIV+HAND−) underwent magnetic resonance imaging (MRI) and neuropsychological assessment. The HIV-infected participants had a mean (SD) age of 35 (7) years, mean (interquartile range (IQR)) CD4 count of 221 (83–324), and mean (IQR) log10 plasma viral load of 4.81 (4.39–5.48). Six regions of interest were selected for analyses including total and subcortical gray matter, total white matter, caudate, corpus callosum, and thalamus. The HIV+/HAND+ group exhibited significantly smaller brain volumes compared to the HIV-uninfected group in subcortical gray and total gray matter; however, there were no statistically significant differences in brain volumes between the HIV+HAND+ and HIV+HAND− groups or between HIV+/HAND− and controls. CD4 count at time of combination antiretroviral therapy (cART) initiation was associated with total and subcortical gray matter volumes but not with cognitive measures. Plasma viral load correlated with neuropsychological performance but not brain volumes. The lack of significant differences in brain volumes between HIV+HAND+ and HIV+HAND− suggests that brain atrophy is not a sensitive measure of HAND in subjects without advanced immunosuppression. Alternatively, current HAND diagnostic criteria may not sufficiently distinguish patients based on MRI measures of brain volumes.


HIV-associated neurocognitive disorder Neuroimaging Thailand Cognition 



We would like to express our deepest gratitude to SEARCH 007 and 011 protocol teams: Nittaya Phanuphak MD, Nitiya Chomchey, Somprartthana Rattanamanee, and Pairoa Praihirunkit from SEARCH/TRCARC; Nijasri Charnnarong MD and Sukalaya Lerdlum MD from Chulalongkorn University; Yotin Chinvarun MD from Phramongkutklao Medical Center; Mark de Souza PhD MPH, Alexandra Schuetz PhD, and Rapee Trichavaroj from the Armed Forces Research Institute of Medical Sciences; Supunee Jirajariyavej MD from Taksin Hospital; Bruce Shiramizu MD from the University of Hawai’i; and Carol Liu, Elijah Mun, Stephanie Chiao, Katherine Clifford, BA, and Lauren Wendelken from UCSF,

This work was supported by NIH grants R01-NS053359 (SR) and R01-NS061696 (VV).

Conflict of interest

The authors declare that they have no conflicts of interest

Supplementary material

13365_2014_309_MOESM1_ESM.docx (16 kb)
Table 1 Supplementary (DOCX 16 kb)
13365_2014_309_MOESM2_ESM.docx (16 kb)
Table 2 Supplementary (DOCX 15 kb)
13365_2014_309_MOESM3_ESM.docx (15 kb)
Table 3 Supplementary (DOCX 15 kb)


  1. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M… Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 69(18):1789–1799Google Scholar
  2. Blackstone K, Moore DJ, Heaton RK, Franklin DR, Woods SP, Clifford DB… Grant I (2012) Diagnosing symptomatic HIV-associated neurocognitive disorders: self-report versus performance-based assessment of everyday functioning. J Int Neuropsychol Soc, 18(01):79–88Google Scholar
  3. Chiao S, Rosen HJ, Nicolas K, Wendelken LA, Alcantar O, Rankin KP… Valcour V (2013) Deficits in self-awareness impact the diagnosis of asymptomatic neurocognitive impairment in HIV. AIDS Res Human Retrovir. 29(6):949–956Google Scholar
  4. Childs EA, Lyles RH, Selnes OA, Chen B, Miller EN, Cohen BA… McArthur JC (1999) Plasma viral load and CD4 lymphocytes predict HIV-associated dementia and sensory neuropathy. Neurology. 52(3):607–607Google Scholar
  5. de Almeida SM, Ribeiro CE, de Pereira AP, Badiee J, Cherner M, Smith D… Ellis RJ (2013) Neurocognitive impairment in HIV-1 clade C-versus B-infected individuals in Southern Brazil. J Neurovirol. 19(6):550–556Google Scholar
  6. Ellis RJ, Evans SR, Clifford DB, Moo LR, McArthur JC, Collier AC… Robertson K (2005) Clinical validation of the NeuroScreen. J Neurovirol. 11(6):503–511Google Scholar
  7. Farias ST, Mungas D, Reed B, Carmichael O, Beckett L, Harvey D… DeCarli C (2012) Maximal brain size remains an important predictor of cognition in old age, independent of current brain pathology. Neurobiol Aging. 33(8):1758–1768Google Scholar
  8. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22CrossRefPubMedGoogle Scholar
  9. Foley JM, Wright MJ, Gooding AL, Ettenhofer M, Kim M, Choi M… Hinkin CH (2011) Operationalization of the updated diagnostic algorithm for classifying HIV-related cognitive impairment and dementia. Int Psychogeriatr. 23(05):835–843Google Scholar
  10. Free SL, Bergin PS, Fish DR, Cook MJ, Shorvon SD, Stevens JM (1995) Methods for normalization of hippocampal volumes measured with MR. Am J Neuroradiol 16(4):637–643PubMedGoogle Scholar
  11. Gisslén M, Price RW, Nilsson S (2011) The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis 11(1):356CrossRefPubMedCentralPubMedGoogle Scholar
  12. Grant I, Franklin DR, Deutsch R, Woods SP, Vaida F, Ellis RJ… Heaton RK (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology. 10–1212Google Scholar
  13. Heaps JM, Joska J, Hoare J Ortega M, Agrawal A, Seedat S… Paul R (2012) Neuroimaging markers of human immunodeficiency virus infection in South Africa. J Neurovirol. 18(3):151–156Google Scholar
  14. Heaps J, Valcour V, Chalermchai T, Paul R, Rattanamanee S, Siangphoe U… Ananworanich J (2013) Development of normative neuropsychological performance in Thailand for the assessment of HIV-associated neurocognitive disorders. J Clin Exp Neuropsychol. 35(1):1–8Google Scholar
  15. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F… Grant I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy CHARTER Study. Neurology. 75(23):2087–2096Google Scholar
  16. Holt JL, Kraft-Terry SD, Chang L (2012) Neuroimaging studies of the aging HIV-1-infected brain. J Neurovirol 18(4):291–302CrossRefPubMedCentralPubMedGoogle Scholar
  17. Jernigan TL, Archibald SL, Fennema-Notestine C, Taylor MJ, Theilmann RJ, Julaton MD… Grant I (2011) Clinical factors related to brain structure in HIV: the CHARTER study. J Neurovirol. 17(3):248–257Google Scholar
  18. Kallianpur KJ, Valcour VG, Lerdlum S, Busovaca E, Agsalda M, Sithinamsuwan P… Ananworanich J (2014) HIV DNA in CD14+ reservoirs is associated with regional brain atrophy in combination antiretroviral therapy naive patients. AIDS. 500:14–00085Google Scholar
  19. Katz S (1983) Assessing self-maintenance: activities of daily living, mobility, and instrumental activities of daily living. J Am Geriatr SocGoogle Scholar
  20. Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186CrossRefPubMedGoogle Scholar
  21. Maj M, D’Elia L, Satz P, Janssen R, Zaudig M, Uchiyama C… Chervinsky A (1993) Evaluation of two new neuropsychological tests designed to minimize cultural bias in the assessment of HIV-1 seropositive persons: a WHO study. Arch Clin Neuropsychol. 8(2):123–135Google Scholar
  22. Maj M, Janssen R, Starace F, Zaudig M, Satz P, Sughondhabirom B… Sartorius N (1994) WHO neuropsychiatric AIDS study, cross-sectional phase I: study design and psychiatric findings. Arch Gen Psychiatry. 51(1):39–49Google Scholar
  23. Meyer AC, Boscardin WJ, Kwasa JK, Price RW (2013) Is it time to rethink how neuropsychological tests are used to diagnose mild forms of HIV-associated neurocognitive disorders impact of false-positive rates on prevalence and power. Neuroepidemiology 41(3–4):208–216CrossRefPubMedCentralPubMedGoogle Scholar
  24. Ortega M, Heaps JM, Joska J, Vaida F, Seedat S, Stein DJ… Ances BM (2013) HIV clades B and C are associated with reduced brain volumetrics. J Neurovirol. 19(5):479–487Google Scholar
  25. Paul R, Cohen R, Navia B, & Tashima K (2002) Relationships between cognition and structural neuroimaging findings in adults with human immunodeficiency virus type-1. Neurosci Biobehav Rev 26(3):353–359Google Scholar
  26. Paul RH, Joska JA, Woods C, Seedat S, Engelbrecht S, Hoare J… Stein DJ (2014) Impact of the HIV Tat C30C31S dicysteine substitution on neuropsychological function in patients with clade C disease. J Neurovirol. 20(6):627–35Google Scholar
  27. Perneczky R, Wagenpfeil S, Lunetta KL, Cupples LA, Green RC, Decarli C… Kurz A (2010) Head circumference, atrophy, and cognition implications for brain reserve in Alzheimer disease. Neurology. 75(2):137–142Google Scholar
  28. Ranjbar S, Rajsbaum R, Goldfeld AE (2006) Transactivator of transcription from HIV type 1 subtype E selectively inhibits TNF gene expression via interference with chromatin remodeling of the TNF locus. J Immunol 176(7):4182–4190CrossRefPubMedGoogle Scholar
  29. Rao VR, Sas AR, Eugenin EA, Siddappa NB, Bimonte-Nelson H, Berman JW… Prasad VR (2008) HIV-1 clade-specific differences in the induction of neuropathogenesis. J Neurosci. 28(40):10010–10016.Google Scholar
  30. Sailasuta N, Ross W, Ananworanich J, Chalermchai T, DeGruttola V, Lerdlum S… RV254/SEARCH 010 protocol teams (2012) Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection. PloS One. 7(11):e49272Google Scholar
  31. Suwanwelaa N, Phanuphak P, Phanthumchinda K, Suwanwela NC, Tantivatana J, Ruxrungtham K… Hanvanich M (2000) Magnetic resonance spectroscopy of the brain in neurologically asymptomatic HIV-infected patients. Magn Reson Imaging. 18(7):859–865Google Scholar
  32. Tate DF, Neeley ES, Norton MC, Tschanz JT, Miller MJ, Wolfson L… Bigler ED (2011) Intracranial volume and dementia: some evidence in support of the cerebral reserve hypothesis. Brain Res. 1385:151–162Google Scholar
  33. Thompson PM, Dutton RA, Hayashi KM, Toga AW, Lopez OL, Aizenstein HJ, Becker JT (2005) Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci U S A 102(43):15647–15652CrossRefPubMedCentralPubMedGoogle Scholar
  34. Thompson MA, Aberg JA, Hoy JF, Telenti A, Benson C, Cahn P… Volberding PA (2012) Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society—USA panel. Jama. 308(4):387–402Google Scholar
  35. Torti C, Focà E, Cesana BM, Lescure FX (2011) Asymptomatic neurocognitive disorders in patients infected by HIV: fact or fiction? BMC Med 9(1):138CrossRefPubMedCentralPubMedGoogle Scholar
  36. Tucker KA, Robertson KR, Lin W, Smith JK, An H, Chen Y… Hall CD (2004) Neuroimaging in human immunodeficiency virus infection. J. Neuroimmunol. 157(1):153–162Google Scholar
  37. Valcour V, Yee P, Williams AE, Shiramizu B, Watters M, Selnes O… Sacktor N (2006) Lowest ever CD4 lymphocyte count (CD4 nadir) as a predictor of current cognitive and neurological status in human immunodeficiency virus type 1 infection—The Hawaii Aging with HIV Cohort. J Neurovirol. 12(5):387–391Google Scholar
  38. Valcour VG, Sithinamsuwan P, Nidhinandana S, Thitivichianlert S, Ratto-Kim S, Apateerapong W… Shikuma CM (2007) Neuropsychological abnormalities in patients with dementia in CRF 01_AE HIV-1 infection. Neurology. 68(7):525–527Google Scholar
  39. Valcour V, Sithinamsuwan P, Letendre S, Ances B (2011) Pathogenesis of HIV in the central nervous system. Curr HIV/AIDS Rep 8(1):54–61CrossRefPubMedCentralPubMedGoogle Scholar
  40. Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D… Ananworanich J (2012) Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis. 206(2):275–282Google Scholar
  41. Valcour VG, Ananworanich J, Agsalda M, Sailasuta N, Chalermchai T, Schuetz A… SEARCH 011 Protocol Team (2013) HIV DNA reservoir increases risk for cognitive disorders in cART-naive patients. PloS One. 8(7):e70164Google Scholar
  42. Vivithanaporn P, Heo G, Gamble J, Krentz HB, Hoke A, Gill MJ, Power C (2010) Neurologic disease burden in treated HIV/AIDS predicts survival: a population-based study. Neurology 75(13):1150–1158CrossRefPubMedCentralPubMedGoogle Scholar
  43. Wirachsilp P, Kantakamalakul W, Foongladda S, Chuenchitra T, Kohriangudom S, Athipanyasilp N… Sutthent R (2007) Surveillance of subtype and genetic variation of the circulating strains of HIV-1 in Thailand. Southeast Asian J Trop Med Public Health. 38:814–827Google Scholar
  44. World Health Organization (WHO) (2013) Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. World Health Organization, Geneva, <>Google Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2015

Authors and Affiliations

  • Jodi M. Heaps
    • 1
    Email author
  • Pasiri Sithinamsuwan
    • 2
  • Robert Paul
    • 1
  • Sukalaya Lerdlum
    • 5
  • Mantana Pothisri
    • 4
  • David Clifford
    • 3
  • Somporn Tipsuk
    • 11
  • Stephanie Catella
    • 6
  • Edgar Busovaca
    • 7
  • James L. K. Fletcher
    • 11
  • Benjamin Raudabaugh
    • 8
  • Silvia Ratto-Kim
    • 9
    • 10
  • Victor Valcour
    • 6
  • Jintanat Ananworanich
    • 9
    • 10
  • on behalf of the SEARCH 007/011 study groups
  1. 1.Missouri Institute of Mental HealthUniversity of Missouri-St. LouisSt. LouisUSA
  2. 2.Department of Medicine, Division of NeurologyPhramongkutklao HospitalBangkokThailand
  3. 3.Department of NeurologyWashington UniversitySt. LouisUSA
  4. 4.Chulalongkorn University HospitalBangkokThailand
  5. 5.Faculty of MedicineChulalongkorn UniversityBangkokThailand
  6. 6.Memory and Aging Center, UCSF Department of NeurologyUniversity of CaliforniaSan FranciscoUSA
  7. 7.Taub Institute for Research on Alzheimer’s Disease and the Aging BrainColumbia University Medical CenterNew YorkUSA
  8. 8.Columbia University School of NursingNew YorkUSA
  9. 9.U.S. Military HIV Research ProgramWalter Reed Army Institute of Research Silver Spring, MD., Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaUSA
  10. 10.SEARCH, The Thai Red Cross AIDS Research CenterBangkokThailand
  11. 11.Memory and Aging Center, UCSF Department of NeurologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations