Journal of NeuroVirology

, Volume 21, Issue 6, pp 601–613 | Cite as

JC polyomavirus attachment, entry, and trafficking: unlocking the keys to a fatal infection

  • Melissa S. Maginnis
  • Christian D. S. Nelson
  • Walter J. Atwood


The human JC polyomavirus (JCPyV) causes a lifelong persistent infection in the reno-urinary tract in the majority of the adult population worldwide. In healthy individuals, infection is asymptomatic, while in immunocompromised individuals, the virus can spread to the central nervous system and cause a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). There are currently very few treatment options for this rapidly progressing and devastating disease. Understanding the basic biology of JCPyV-host cell interactions is critical for the development of therapeutic strategies to prevent or treat PML. Research in our laboratory has focused on gaining a detailed mechanistic understanding of the initial steps in the JCPyV life cycle in order to define how JCPyV selectively targets cells in the kidney and brain. JCPyV requires sialic acids to attach to host cells and initiate infection, and JCPyV demonstrates specificity for the oligosaccharide lactoseries tetrasaccharide c (LSTc) with an α2,6-linked sialic acid. Following viral attachment, JCPyV entry is facilitated by the 5-hydroxytryptamine (5-HT)2 family of serotonin receptors via clathrin-dependent endocytosis. JCPyV then undergoes retrograde transport to the endoplasmic reticulum (ER) where viral disassembly begins. A novel retrograde transport inhibitor termed Retro-2cycl prevents trafficking of JCPyV to the ER and inhibits both initial virus infection and infectious spread in cell culture. Understanding the molecular mechanisms by which JCPyV establishes infection will open up new avenues for the prevention or treatment of virus-induced disease.


JC polyomavirus PML Sialic acid LSTc Serotonin receptor Retro-2cycl 



We thank all of the people that contributed to the work discussed in this review article and Gretchen Gee for critical review of the manuscript. Research in the Atwood laboratory is funded by 5P01NS065719 (W.J.A.), R01NS043097 (W.J.A.), and Ruth L. Kirschstein National Research Service Awards F32NS064870 (M.S.M.) and F32NS070687 (C.D.S.N.) from the National Institute of Neurological Disorders and Stroke. Core facilities that support our work are funded by P30GM103410 (W.J.A).

Conflict of interest

Melissa S. Maginnis declares that she has no conflict of interest. Christian D. Nelson declares that he has no conflict of interest. Walter J. Atwood declares that he has no conflict of interest.


  1. Agostini HT, Ryschkewitsch CF, Stoner GL (1996) Genotype profile of human polyomavirus JC excreted in urine of immunocompetent individuals. J Clin Microbiol 34:159–164PubMedCentralPubMedGoogle Scholar
  2. Altheide TK, Hayakawa T, Mikkelsen TS, Diaz S, Varki N, Varki A (2006) System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: evidence for two modes of rapid evolution. J Biol Chem 281:25689–25702PubMedCrossRefGoogle Scholar
  3. Assetta B, Maginnis MS, Gracia Ahufinger I, Haley SA, Gee GV, Nelson CD, O’Hara BA, Allen Ramdial SA, Atwood WJ (2013) 5-HT2 receptors facilitate JC polyomavirus entry. J VirolGoogle Scholar
  4. Astrom KE, Mancall EL, Richardson EP Jr (1958) Progressive multifocal leuko-encephalopathy; a hitherto unrecognized complication of chronic lymphatic leukaemia and Hodgkin’s disease. Brain 81:93–111PubMedCrossRefGoogle Scholar
  5. Atwood WJ, Amemiya K, Traub R, Harms J, Major EO (1992) Interaction of the human polyomavirus, JCV, with human B-lymphocytes. Virology 190:716–723PubMedCrossRefGoogle Scholar
  6. Backstrom JR, Westphal RS, Canton H, Sanders-Bush E (1995) Identification of rat serotonin 5-HT2C receptors as glycoproteins containing N-linked oligosaccharides. Brain Res Mol Brain Res 33:311–318PubMedCrossRefGoogle Scholar
  7. Barbier J, Bouclier C, Johannes L, Gillet D (2012) Inhibitors of the cellular trafficking of ricin. Toxins 4:15–27PubMedCentralPubMedCrossRefGoogle Scholar
  8. Berger JR, Pall L, Lanska D, Whiteman M (1998) Progressive multifocal leukoencephalopathy in patients with HIV infection. J Neurovirol 4:59–68PubMedCrossRefGoogle Scholar
  9. Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, Natarajan A, Lee S, Plavina T, Scanlon JV, Sandrock A, Bozic C (2012) Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 366:1870–1880PubMedCrossRefGoogle Scholar
  10. Bockaert J, Claeysen S, Becamel C, Dumuis A, Marin P (2006) Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326:553–572PubMedCrossRefGoogle Scholar
  11. Bonavia A, Franti M, Pusateri Keaney E, Kuhen K, Seepersaud M, Radetich B, Shao J, Honda A, Dewhurst J, Balabanis K, Monroe J, Wolff K, Osborne C, Lanieri L, Hoffmaster K, Amin J, Markovits J, Broome M, Skuba E, Cornella-Taracido I, Joberty G, Bouwmeester T, Hamann L, Tallarico J, Tommasi R, Compton T, Bushell S (2011) Identification of broad-spectrum antiviral compounds and assessment of the druggability of their target for efficacy against respiratory syncytial virus (RSV). Proc Natl Acad Sci U S A 108:6739–6744PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P, Chan HW, Eglen RM (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115:622–628PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53PubMedCentralPubMedCrossRefGoogle Scholar
  14. Breg J, Kroon-Batenburg LM, Strecker G, Montreuil J, Vliegenthart JF (1989) Conformational analysis of the sialyl alpha(2-3/6)N-acetyllactosamine structural element occurring in glycoproteins, by two-dimensional NOE 1H-NMR spectroscopy in combination with energy calculations by hard-sphere exo-anomeric and molecular mechanics force-field with hydrogen-bonding potential. Eur J Biochem 178:727–739PubMedCrossRefGoogle Scholar
  15. Brew BJ, Davies NW, Cinque P, Clifford DB, Nath A (2010) Progressive multifocal leukoencephalopathy and other forms of JC virus disease. Nat Rev Neurol 6:667–679PubMedCrossRefGoogle Scholar
  16. Campanero-Rhodes M, Smith A, Chai W, Sonnino S, Mauri L, Childs R, Zhang Y, Ewers H, Helenius A, Imberty A, Feizi T (2007) N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol 81:12846–12858PubMedCentralPubMedCrossRefGoogle Scholar
  17. Carson KR, Focosi D, Major EO, Petrini M, Richey EA, West DP, Bennett CL (2009) Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncol 10:816–824PubMedCrossRefGoogle Scholar
  18. Chapagain ML, Nerurkar VR (2010) Human polyomavirus JC (JCV) infection of human B lymphocytes: a possible mechanism for JCV transmigration across the blood–brain barrier. J Infect Dis 202:184–191PubMedCentralPubMedCrossRefGoogle Scholar
  19. Chapagain ML, Verma S, Mercier F, Yanagihara R, Nerurkar VR (2007) Polyomavirus JC infects human brain microvascular endothelial cells independent of serotonin receptor 2A. Virology 364:55–63PubMedCentralPubMedCrossRefGoogle Scholar
  20. Chen BJ, Atwood WJ (2002) Construction of a novel JCV/SV40 hybrid virus (JCSV) reveals a role for the JCV capsid in viral tropism. Virology 300:282–290PubMedCrossRefGoogle Scholar
  21. Chen XS, Stehle T, Harrison SC (1998) Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. Embo J 17:3233–3240PubMedCentralPubMedCrossRefGoogle Scholar
  22. Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A (2005) Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168:477–488PubMedCentralPubMedCrossRefGoogle Scholar
  23. Daniel AM, Swenson JJ, Mayreddy RP, Khalili K, Frisque RJ (1996) Sequences within the early and late promoters of archetype JC virus restrict viral DNA replication and infectivity. Virology 216:90–101PubMedCrossRefGoogle Scholar
  24. Daniels R, Rusan N, Wadsworth P, Hebert D (2006) SV40 VP2 and VP3 insertion into ER membranes is controlled by the capsid protein VP1: implications for DNA translocation out of the ER. Mol Cell 24:955–966PubMedCrossRefGoogle Scholar
  25. DeCaprio JA, Garcea RL (2013) A cornucopia of human polyomaviruses. Nat Rev Microbiol 11:264–276PubMedCentralPubMedCrossRefGoogle Scholar
  26. Delbue S, Branchetti E, Bertolacci S, Tavazzi E, Marchioni E, Maserati R, Minnucci G, Tremolada S, Vago G, Ferrante P (2009) JC virus VP1 loop-specific polymorphisms are associated with favorable prognosis for progressive multifocal leukoencephalopathy. J Neurovirol 15:51–56PubMedCentralPubMedCrossRefGoogle Scholar
  27. Dorries K (1998) Molecular biology and pathogenesis of human polyomavirus infections. Dev Biol Stand 94:71–79PubMedGoogle Scholar
  28. Dorries K, Vogel E, Gunther S, Czub S (1994) Infection of human polyomaviruses JC and BK in peripheral blood leukocytes from immunocompetent individuals. Virology 198:59–70PubMedCrossRefGoogle Scholar
  29. Du Pasquier RA, Corey S, Margolin DH, Williams K, Pfister LA, De Girolami U, Mac Key JJ, Wuthrich C, Joseph JT, Koralnik IJ (2003) Productive infection of cerebellar granule cell neurons by JC virus in an HIV + individual. Neurology 61:775–782PubMedCrossRefGoogle Scholar
  30. Dubois V, Lafon ME, Ragnaud JM, Pellegrin JL, Damasio F, Baudouin C, Michaud V, Fleury HJ (1996) Detection of JC virus DNA in the peripheral blood leukocytes of HIV-infected patients. Aids 10:353–358PubMedCrossRefGoogle Scholar
  31. Dubois V, Dutronc H, Lafon ME, Poinsot V, Pellegrin JL, Ragnaud JM, Ferrer AM, Fleury HJ (1997) Latency and reactivation of JC virus in peripheral blood of human immunodeficiency virus type 1-infected patients. J Clin Microbiol 35:2288–2292PubMedCentralPubMedGoogle Scholar
  32. Dugan AS, Gasparovic ML, Atwood WJ (2008) Direct correlation between sialic acid binding and infection of cells by two human polyomaviruses (JC virus and BK virus). J Virol 82:2560–2564PubMedCentralPubMedCrossRefGoogle Scholar
  33. Eash S, Tavares R, Stopa EG, Robbins SH, Brossay L, Atwood WJ (2004) Differential distribution of the JC virus receptor-type sialic acid in normal human tissues. Am J Pathol 164:419–428PubMedCentralPubMedCrossRefGoogle Scholar
  34. Egli A, Infanti L, Dumoulin A, Buser A, Samaridis J, Stebler C, Gosert R, Hirsch HH (2009) Prevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors. J Infect Dis 199:837–846PubMedCrossRefGoogle Scholar
  35. Elphick GF, Querbes W, Jordan JA, Gee GV, Eash S, Manley K, Dugan A, Stanifer M, Bhatnagar A, Kroeze WK, Roth BL, Atwood WJ (2004) The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science 306:1380–1383PubMedCrossRefGoogle Scholar
  36. Engel S, Heger T, Mancini R, Herzog F, Kartenbeck J, Hayer A, Helenius A (2011) Role of endosomes in simian virus 40 entry and infection. J Virol 85:4198–4211PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ewers H, Römer W, Smith A, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L, Oppenheim A, Schwarzmann G, Feizi T, Schwille P, Sens P, Helenius A, Johannes L (2010) GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12:11PubMedCrossRefGoogle Scholar
  38. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100PubMedCentralPubMedCrossRefGoogle Scholar
  39. Ferenczy MW, Marshall LJ, Nelson CD, Atwood WJ, Nath A, Khalili K, Major EO (2012) Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 25:471–506PubMedCentralPubMedCrossRefGoogle Scholar
  40. Focosi D, Kast RE, Maggi F, Ceccherini-Nelli L, Petrini M (2008) Sialic acid moieties and 5-HT2a: two faces of the same receptor for JC virus? J Clin Virol 43:132–133PubMedCrossRefGoogle Scholar
  41. Freund R, Garcea RL, Sahli R, Benjamin TL (1991) A single-amino-acid substitution in polyomavirus VP1 correlates with plaque size and hemagglutination behavior. J Virol 65:350–355PubMedCentralPubMedGoogle Scholar
  42. Frisque RJ (1983a) Nucleotide sequence of the region encompassing the JC virus origin of DNA replication. J Virol 46:170–176PubMedCentralPubMedGoogle Scholar
  43. Frisque RJ (1983b) Regulatory sequences and virus-cell interactions of JC virus. Prog Clin Biol Res 105:41–59PubMedGoogle Scholar
  44. Frisque RJ, Bream GL, Cannella MT (1984) Human polyomavirus JC virus genome. J Virol 51:458–469PubMedCentralPubMedGoogle Scholar
  45. Fujinaga Y, Wolf A, Rodighiero C, Wheeler H, Tsai B, Allen L, Jobling M, Rapoport T, Holmes R, Lencer W (2003) Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulm. Mol Biol Cell 14:4783–4793PubMedCentralPubMedCrossRefGoogle Scholar
  46. Gasparovic M, Gee G, Atwood W (2006) JC virus minor capsid proteins Vp2 and Vp3 are essential for virus propagation. J Virol 80:10858–10861PubMedCentralPubMedCrossRefGoogle Scholar
  47. Gee GV, Tsomaia N, Mierke DF, Atwood WJ (2004) Modeling a sialic acid binding pocket in the external loops of JC virus VP1. J Biol Chem 279:49172–49176PubMedCrossRefGoogle Scholar
  48. Gee GV, Dugan AS, Tsomaia N, Mierke DF, Atwood WJ (2006) The role of sialic acid in human polyomavirus infections. Glycoconj J 23:19–26PubMedCrossRefGoogle Scholar
  49. Geiger R, Andritschke D, Friebe S, Herzog F, Luisoni S, Heger T, Helenius A (2011) BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat Cell Biol 13:1305–1314PubMedCrossRefGoogle Scholar
  50. Gilbert J, Dahl J, Riney C, You J, Cui C, Holmes R, Lencer W, Benjamin T (2005) Ganglioside GD1a restores infectibility to mouse cells lacking functional receptors for polyomavirus. J Virol 79:615–618PubMedCentralPubMedCrossRefGoogle Scholar
  51. Gilbert J, Ou W, Silver J, Benjamin T (2006) Downregulation of protein disulfide isomerase inhibits infection by the mouse polyomavirus. J Virol 80:10868–10870PubMedCentralPubMedCrossRefGoogle Scholar
  52. Girard E, Chmiest D, Fournier N, Johannes L, Paul J-L, Vedie B, Lamaze C (2014) Rab7 is functionally required for selective cargo sorting at the early endosome. Traffic (Copenhagen, Denmark) 15:309–326CrossRefGoogle Scholar
  53. Gorelik L, Reid C, Testa M, Brickelmaier M, Bossolasco S, Pazzi A, Bestetti A, Carmillo P, Wilson E, McAuliffe M, Tonkin C, Carulli JP, Lugovskoy A, Lazzarin A, Sunyaev S, Simon K, Cinque P (2011) Progressive multifocal leukoencephalopathy (PML) development is associated with mutations in JC virus capsid protein VP1 that change its receptor specificity. J Infect Dis 204:103–114PubMedCentralPubMedCrossRefGoogle Scholar
  54. Grove J, Marsh M (2011) The cell biology of receptor-mediated virus entry. J Cell Biol 195:1071–1082PubMedCentralPubMedCrossRefGoogle Scholar
  55. Hayer A, Stoeber M, Ritz D, Engel S, Meyer H, Helenius A (2010) Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 191:615–629PubMedCentralPubMedCrossRefGoogle Scholar
  56. Hellwig K, Gold R (2011) Progressive multifocal leukoencephalopathy and natalizumab. J Neurol 258:1920–1928PubMedCrossRefGoogle Scholar
  57. Houff SA, Major EO, Katz DA, Kufta CV, Sever JL, Pittaluga S, Roberts JR, Gitt J, Saini N, Lux W (1988) Involvement of JC virus-infected mononuclear cells from the bone marrow and spleen in the pathogenesis of progressive multifocal leukoencephalopathy. N Engl J Med 318:301–305PubMedCrossRefGoogle Scholar
  58. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500PubMedCentralPubMedCrossRefGoogle Scholar
  59. Kenney S, Natarajan V, Salzman NP (1986a) Mapping 5′ termini of JC virus late RNA. J Virol 58:216–219PubMedCentralPubMedGoogle Scholar
  60. Kenney S, Natarajan V, Selzer G, Salzman NP (1986b) Mapping 5′ termini of JC virus early RNAs. J Virol 58:651–654PubMedCentralPubMedGoogle Scholar
  61. Komagome R, Sawa H, Suzuki T, Suzuki Y, Tanaka S, Atwood WJ, Nagashima K (2002) Oligosaccharides as receptors for JC virus. J Virol 76:12992–13000PubMedCentralPubMedCrossRefGoogle Scholar
  62. Krebs CJ, McAvoy MT, Kumar G (1995) The JC virus minimal core promoter is glial cell specific in vivo. J Virol 69:2434–2442PubMedCentralPubMedGoogle Scholar
  63. Krumm S, Ndungu J, Yoon J-J, Dochow M, Sun A, Natchus M, Snyder J, Plemper R (2011) Potent host-directed small-molecule inhibitors of myxovirus RNA-dependent RNA-polymerases. PLoS One 6Google Scholar
  64. Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 354:278–284PubMedCrossRefGoogle Scholar
  65. Liebl D, Difato F, Horníková L, Mannová P, Stokrová J, Forstová J (2006) Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11-positive endosomes. J Virol 80:4610–4622PubMedCentralPubMedCrossRefGoogle Scholar
  66. Lipovsky A, Popa A, Pimienta G, Wyler M, Bhan A, Kuruvilla L, Guie MA, Poffenberger AC, Nelson CD, Atwood WJ, DiMaio D (2013) Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus. Proc Natl Acad Sci U S A 110:7452–7457PubMedCentralPubMedCrossRefGoogle Scholar
  67. Lippincott-Schwartz J, Yuan L, Bonifacino J, Klausner R (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56:801–813PubMedCrossRefGoogle Scholar
  68. Liu CK, Hope AP, Atwood WJ (1998a) The human polyomavirus, JCV, does not share receptor specificity with SV40 on human glial cells. J Neurovirol 4:49–58PubMedCrossRefGoogle Scholar
  69. Liu CK, Wei G, Atwood WJ (1998b) Infection of glial cells by the human polyomavirus JC is mediated by an N-linked glycoprotein containing terminal alpha(2–6)-linked sialic acids. J Virol 72:4643–4649PubMedCentralPubMedGoogle Scholar
  70. Low S, Wong S, Tang B, Tan P, Subramaniam V, Hong W (1991) Inhibition by brefeldin A of protein secretion from the apical cell surface of Madin-Darby canine kidney cells. J Biol Chem 266:17729–17732PubMedGoogle Scholar
  71. Maccioni HJ, Quiroga R, Ferrari ML (2011) Cellular and molecular biology of glycosphingolipid glycosylation. J Neurochem 117:589–602PubMedGoogle Scholar
  72. Maginnis MS, Haley SA, Gee GV, Atwood WJ (2010) Role of N-linked glycosylation of the 5-HT2A receptor in JC virus infection. J Virol 84:9677–9684PubMedCentralPubMedCrossRefGoogle Scholar
  73. Maginnis MS, Stroh LJ, Gee GV, O’Hara BA, Derdowski A, Stehle T, Atwood WJ (2013) Progressive multifocal leukoencephalopathy-associated mutations in the JC polyomavirus capsid disrupt lactoseries tetrasaccharide c binding. MBio 4:e00247–13PubMedCentralPubMedCrossRefGoogle Scholar
  74. Magnuson B, Rainey E, Benjamin T, Baryshev M, Mkrtchian S, Tsai B (2005) ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 20:289–300PubMedCrossRefGoogle Scholar
  75. Mannová P, Forstová J (2003) Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of COPI vesicle transport. J Virol 77:1672–1681PubMedCentralPubMedCrossRefGoogle Scholar
  76. Martin JD, King DM, Slauch JM, Frisque RJ (1985) Differences in regulatory sequences of naturally occurring JC virus variants. J Virol 53:306–311PubMedCentralPubMedGoogle Scholar
  77. Mishra N, Pereira M, Rhodes RH, An P, Pipas JM, Jain K, Kapoor A, Briese T, Faust PL, Lipkin WI (2014) Identification of a novel polyomavirus in a pancreatic transplant recipient with retinal blindness and vasculitic myopathy. J Infect DisGoogle Scholar
  78. Misumi Y, Misumi Y, Miki K, Takatsuki A, Tamura G, Ikehara Y (1986) Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem 261:11398–11403PubMedGoogle Scholar
  79. Nelson C, Derdowski A, Maginnis M, O’Hara B, Atwood W (2012) The VP1 subunit of JC polyomavirus recapitulates early events in viral trafficking and is a novel tool to study polyomavirus entry. Virology 428:30–40PubMedCentralPubMedCrossRefGoogle Scholar
  80. Nelson C, Carney D, Derdowski A, Lipovsky A, Gee G, O’Hara B, Williard P, DiMaio D, Sello J, Atwood W (2013) A retrograde trafficking inhibitor of ricin and Shiga-like toxins inhibits infection of cells by human and monkey polyomaviruses. mBio 4:13CrossRefGoogle Scholar
  81. Neu U, Woellner K, Gauglitz G, Stehle T (2008) Structural basis of GM1 ganglioside recognition by simian virus 40. Proc Natl Acad Sci U S A 105:5219–5224PubMedCentralPubMedCrossRefGoogle Scholar
  82. Neu U, Stehle T, Atwood WJ (2009) The polyomaviridae: contributions of virus structure to our understanding of virus receptors and infectious entry. Virology 384:389–399PubMedCentralPubMedCrossRefGoogle Scholar
  83. Neu U, Maginnis MS, Palma AS, Stroh LJ, Nelson CD, Feizi T, Atwood WJ, Stehle T (2010) Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe 8:309–319PubMedCentralPubMedCrossRefGoogle Scholar
  84. Neu U, Allen SA, Blaum BS, Liu Y, Frank M, Palma AS, Stroh LJ, Feizi T, Peters T, Atwood WJ, Stehle T (2013) A structure-guided mutation in the major capsid protein retargets BK polyomavirus. PLoS Pathog 9:e1003688PubMedCentralPubMedCrossRefGoogle Scholar
  85. Noel R, Gupta N, Pons V, Goudet A, Garcia-Castillo M, Michau A, Martinez J, Buisson D-A, Johannes L, Gillet D, Barbier J, Cintrat J-C (2013) N-methyldihydroquinazolinone derivatives of Retro-2 with enhanced efficacy against Shiga toxin. J Med Chem 56:3404–3413PubMedCrossRefGoogle Scholar
  86. O’Hara BA, Atwood WJ (2008) Interferon beta1-a and selective anti-5HT(2a) receptor antagonists inhibit infection of human glial cells by JC virus. Virus Res 132:97–103PubMedCentralPubMedCrossRefGoogle Scholar
  87. Park JG, Kahn JN, Tumer NE, Pang YP (2012) Chemical structure of Retro-2, a compound that protects cells against ribosome-inactivating proteins. Sci Rep 2:631PubMedCentralPubMedGoogle Scholar
  88. Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483PubMedCrossRefGoogle Scholar
  89. Pho MT, Ashok A, Atwood WJ (2000) JC virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. J Virol 74:2288–2292PubMedCentralPubMedCrossRefGoogle Scholar
  90. Provencher V, Coccaro E, Lacasse J, Schang L (2004) Antiviral drugs that target cellular proteins may play major roles in combating HIV resistance. Curr Pharm Des 10:4081–4101PubMedCrossRefGoogle Scholar
  91. Qian M, Tsai B (2010) Lipids and proteins act in opposing manners to regulate polyomavirus infection. J Virol 84:9840–9852PubMedCentralPubMedCrossRefGoogle Scholar
  92. Qian M, Cai D, Verhey K, Tsai B (2009) A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog 5Google Scholar
  93. Querbes W, Benmerah A, Tosoni D, Di Fiore PP, Atwood WJ (2004) A JC virus-induced signal is required for infection of glial cells by a clathrin- and eps15-dependent pathway. J Virol 78:250–256PubMedCentralPubMedCrossRefGoogle Scholar
  94. Querbes W, O’Hara B, Williams G, Atwood W (2006) Invasion of host cells by JC virus identifies a novel role for caveolae in endosomal sorting of noncaveolar ligands. J Virol 80:9402–9413PubMedCentralPubMedCrossRefGoogle Scholar
  95. Reid CE, Li H, Sur G, Carmillo P, Bushnell S, Tizard R, McAuliffe M, Tonkin C, Simon K, Goelz S, Cinque P, Gorelik L, Carulli JP (2011) Sequencing and analysis of JC virus DNA from natalizumab-treated PML patients. J Infect Dis 204:237–244PubMedCentralPubMedCrossRefGoogle Scholar
  96. Riboni L, Tettamanti G (1991) Rapid internalization and intracellular metabolic processing of exogenous ganglioside by cerebellar granule cells differentiated in culture. J Neurochem 57:1931–1939PubMedCrossRefGoogle Scholar
  97. Rinaldo CH, Hirsch HH (2013) The human polyomaviruses: from orphans and mutants to patchwork family. APMIS 121:681–684PubMedCrossRefGoogle Scholar
  98. Schaumburg C, O’Hara BA, Lane TE, Atwood WJ (2008) Human embryonic stem cell-derived oligodendrocyte progenitor cells express the serotonin receptor and are susceptible to JC virus infection. J Virol 82:8896–8899PubMedCentralPubMedCrossRefGoogle Scholar
  99. Schelhaas M, Malmstrom J, Pelkmans L, Haugstetter J, Ellgaard L, Grunewald K, Helenius A (2007) Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131:516–529PubMedCrossRefGoogle Scholar
  100. Schweighardt B, Atwood WJ (2001) Glial cells as targets of viral infection in the human central nervous system. Prog Brain Res 132:721–735PubMedCrossRefGoogle Scholar
  101. Shah KV, Fields BN, Knipe DM, Howley PM (1996) Fields virology, 3rd edn. Lippincott-Raven Publishers, PhiladelphiaGoogle Scholar
  102. Silverman L, Rubinstein LJ (1965) Electron microscopic observations on a case of progressive multifocal leukoencephalopathy. Acta Neuropathol 5:215–224PubMedCrossRefGoogle Scholar
  103. Sock E, Renner K, Feist D, Leger H, Wegner M (1996) Functional comparison of PML-type and archetype strains of JC virus. J Virol 70:1512–1520PubMedCentralPubMedGoogle Scholar
  104. Sorensen A, Moffat K, Thomson C, Barnett SC (2008) Astrocytes, but not olfactory ensheathing cells or Schwann cells, promote myelination of CNS axons in vitro. Glia 56:750–763PubMedCrossRefGoogle Scholar
  105. Spiegel I, Peles E (2006) A new player in CNS myelination. Neuron 49:777–778PubMedCrossRefGoogle Scholar
  106. Stechmann B, Bai S-K, Gobbo E, Lopez R, Merer G, Pinchard S, Panigai L, Tenza D, Raposo G, Beaumelle B, Sauvaire D, Gillet D, Johannes L, Barbier J (2010) Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 141:231–242PubMedCrossRefGoogle Scholar
  107. Steiner I, Berger JR (2012) Update on progressive multifocal leukoencephalopathy. Curr Neurol Neurosci RepGoogle Scholar
  108. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525PubMedCrossRefGoogle Scholar
  109. Sunyaev SR, Lugovskoy A, Simon K, Gorelik L (2009) Adaptive mutations in the JC virus protein capsid are associated with progressive multifocal leukoencephalopathy (PML). PLoS Genet 5:e1000368PubMedCentralPubMedCrossRefGoogle Scholar
  110. Suzuki H, Gen K (2012) The relationship between the plasma concentration of blonanserin, and its plasma anti-serotonin 5-HT(2A) activity/anti-dopamine D(2) activity ratio and drug-induced extrapyramidal symptoms. Psychiatry Clin Neurosci 66:146–152PubMedCrossRefGoogle Scholar
  111. Tessitore A, del P Martin M, Sano R, Ma Y, Mann L, Ingrassia A, Laywell E, Steindler D, Hendershot L, d’Azzo A (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15:753–766PubMedCrossRefGoogle Scholar
  112. Tettamanti G (2004) Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J 20:301–317PubMedCrossRefGoogle Scholar
  113. Tornatore C, Berger JR, Houff SA, Curfman B, Meyers K, Winfield D, Major EO (1992) Detection of JC virus DNA in peripheral lymphocytes from patients with and without progressive multifocal leukoencephalopathy. Ann Neurol 31:454–462PubMedCrossRefGoogle Scholar
  114. Tsai B, Gilbert J, Stehle T, Lencer W, Benjamin T, Rapoport T (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22:4346–4355PubMedCentralPubMedCrossRefGoogle Scholar
  115. Varki A, Schauer R (2009) Sialic acids. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor, NYGoogle Scholar
  116. Walczak CP, Tsai B (2011) A PDI family network acts distinctly and coordinately with ERp29 to facilitate polyomavirus infection. J Virol 85:2386–2396PubMedCentralPubMedCrossRefGoogle Scholar
  117. Wei G, Liu CK, Atwood WJ (2000) JC virus binds to primary human glial cells, tonsillar stromal cells, and B-lymphocytes, but not to T lymphocytes. J Neurovirol 6:127–136PubMedCrossRefGoogle Scholar
  118. Willins DL, Deutch AY, Roth BL (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27:79–82PubMedCrossRefGoogle Scholar
  119. Wuthrich C, Koralnik IJ (2012) Frequent infection of cortical neurons by JC virus in patients with progressive multifocal leukoencephalopathy. J Neuropathol Exp Neurol 71:54–65PubMedCentralPubMedCrossRefGoogle Scholar
  120. Wuthrich C, Cheng YM, Joseph JT, Kesari S, Beckwith C, Stopa E, Bell JE, Koralnik IJ (2009) Frequent infection of cerebellar granule cell neurons by polyomavirus JC in progressive multifocal leukoencephalopathy. J Neuropathol Exp Neurol 68:15–25PubMedCentralPubMedCrossRefGoogle Scholar
  121. Xu D, Newhouse EI, Amaro RE, Pao HC, Cheng LS, Markwick PR, McCammon JA, Li WW, Arzberger PW (2009) Distinct glycan topology for avian and human sialopentasaccharide receptor analogues upon binding different hemagglutinins: a molecular dynamics perspective. J Mol Biol 387:465–491PubMedCentralPubMedCrossRefGoogle Scholar
  122. Yogo Y, Kitamura T, Sugimoto C, Ueki T, Aso Y, Hara K, Taguchi F (1990) Isolation of a possible archetypal JC virus DNA sequence from nonimmunocompromised individuals. J Virol 64:3139–3143PubMedCentralPubMedGoogle Scholar
  123. Yogo Y, Zhong S, Shibuya A, Kitamura T, Homma Y (2008) Transcriptional control region rearrangements associated with the evolution of JC polyomavirus. Virology 380:118–123PubMedCrossRefGoogle Scholar
  124. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117PubMedCrossRefGoogle Scholar
  125. Zheng HY, Takasaka T, Noda K, Kanazawa A, Mori H, Kabuki T, Joh K, Oh-ishi T, Ikegaya H, Nagashima K, Hall WW, Kitamura T, Yogo Y (2005) New sequence polymorphisms in the outer loops of the JC polyomavirus major capsid protein (VP1) possibly associated with progressive multifocal leukoencephalopathy. J Gen Virol 86:2035–2045PubMedCrossRefGoogle Scholar
  126. Zurhein G, Chou SM (1965) Particles resembling papova viruses in human cerebral demyelinating disease. Science 148:1477–1479PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2014

Authors and Affiliations

  • Melissa S. Maginnis
    • 1
    • 2
  • Christian D. S. Nelson
    • 1
  • Walter J. Atwood
    • 1
  1. 1.Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceUSA
  2. 2.Department of Molecular and Biomedical SciencesUniversity of MaineOronoUSA

Personalised recommendations