Journal of NeuroVirology

, Volume 20, Issue 3, pp 294–303 | Cite as

Predictors of CNS injury as measured by proton magnetic resonance spectroscopy in the setting of chronic HIV infection and CART

  • J. HarezlakEmail author
  • R. Cohen
  • A. Gongvatana
  • M. Taylor
  • S. Buchthal
  • G. Schifitto
  • J. Zhong
  • E. S. Daar
  • J. R. Alger
  • M. Brown
  • E. J. Singer
  • T. B. Campbell
  • D. McMahon
  • Y. T. So
  • C. T. Yiannoutsos
  • B. A. Navia
  • The HIV Neuroimaging Consortium


The reasons for persistent brain dysfunction in chronically HIV-infected persons on stable combined antiretroviral therapies (CART) remain unclear. Host and viral factors along with their interactions were examined in 260 HIV-infected subjects who underwent magnetic resonance spectroscopy (MRS). Metabolite concentrations (NAA/Cr, Cho/Cr, MI/Cr, and Glx/Cr) were measured in the basal ganglia, the frontal white matter, and gray matter, and the best predictive models were selected using a bootstrap-enhanced Akaike information criterion (AIC). Depending on the metabolite and brain region, age, race, HIV RNA concentration, ADC stage, duration of HIV infection, nadir CD4, and/or their interactions were predictive of metabolite concentrations, particularly the basal ganglia NAA/Cr and the mid-frontal NAA/Cr and Glx/Cr, whereas current CD4 and the CPE index rarely or did not predict these changes. These results show for the first time that host and viral factors related to both current and past HIV status contribute to persisting cerebral metabolite abnormalities and provide a framework for further understanding neurological injury in the setting of chronic and stable disease.


MRS HIV dementia Neuroimaging Antiretroviral therapies HIV RNA Biomarkers 


Conflict of interest

The authors, Harezlak J, Cohen R, Gongvatana A, Taylor M, Buchthal S, Schifitto G, Zhong J, Daar ES, Alger JR, Brown M, Singer EJ, Campbell TB, McMahon D, So YT, Yiannoutsos CT, and Navia BA, declare that they have no conflict of interest.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Ances BM, Bhatt A, Vaida F, Rosario D, Alexander T, Marquie-Beck J et al (2009) Role of metabolic syndrome components in human immunodeficiency virus-associated stroke. J Neurovirol 15(3):249–256, PMCID: 2891579PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ances B, Vaida F, Yeh MJ, Liang CL, Buxton RB, Letendre S et al (2010) HIV and aging independently affect brain function as measured by functional magnetic resonance imaging. J Infect Dis 201(3):336–340PubMedCentralPubMedCrossRefGoogle Scholar
  4. Antinori A, Arendt G, Becker JT et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799PubMedCrossRefGoogle Scholar
  5. Austin P, Tu J (2004) Bootstrap methods for developing predictive models. Am Stat 58:131–137CrossRefGoogle Scholar
  6. Becker JT, Lopez OL, Dew MA, Aizenstein HJ (2004) Prevalence of cognitive disorders differs as a function of age in HIV virus infection. AIDS 18:11–18CrossRefGoogle Scholar
  7. Brew BJ, Rosenblum M, Cronin K, Price RW (1995) AIDS dementia complex and HIV-1 brain infection: clinical-virological correlations. Ann Neurol 38(4):563–570PubMedCrossRefGoogle Scholar
  8. Caldwell J, Cohen, RA, Gongvatana, A, Tashima, K, Navia, B. Neural dysregulation during a working memory task in human immunodeficiency virus-seropositive and hepatitis C coinfected individuals. in press.Google Scholar
  9. Cardenas VA, Meyerhoff DJ, Studholme C et al (2009) Evidence for ongoing brain injury in human immunodeficiency virus-positive patients treated with antiretroviral therapy. J Neurovirol 15(4):324–333PubMedCentralPubMedCrossRefGoogle Scholar
  10. Casado JL, Marín A, Moreno A, Iglesias V, Perez-Elías MJ, Moreno S, Corral I (2014) Central nervous system antiretroviral penetration and cognitive functioning in largely pretreated HIV-infected patients. J Neurovirol 1–8Google Scholar
  11. Chang L, Ernst T, Witt MD, Ames N, Gaiefsky M, Miller E (2002) Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naive HIV patients. Neuroimage 17:1638–48.20PubMedCrossRefGoogle Scholar
  12. Chang L, Holt JL, Yakupov R, Jiang CS, Ernst T (2013) Lower cognitive reserve in the aging human immunodeficiency virus-infected brain. Neurobiol Aging 34(4):1240–1253PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chang L, Lee PL, Yiannoutsos CT, Ernst T, Marra CM, Richards T et al (2004) A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 23:1336–1347PubMedCrossRefGoogle Scholar
  14. Cohen RA, Harezlak J, Schifitto G et al (2010a) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16(1):25–32PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cohen RA, Harezlak J, Gongvatana A et al (2010b) Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. J Neurovirol 16(6):435–444PubMedCrossRefGoogle Scholar
  16. Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR et al (1997) Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol 42:679–688PubMedCrossRefGoogle Scholar
  17. Ernst T, Chang L, Jovicich J, Ames N, Arnold S (2002) Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology 59(9):1343–1349PubMedCrossRefGoogle Scholar
  18. Ernst T, Yakupov R, Nakama H et al (2009) Declined neural efficiency in cognitively stable human immunodeficiency virus patients. Ann Neurol 65(3):316–325PubMedCentralPubMedCrossRefGoogle Scholar
  19. Foley JM, Ettenhofer ML, Kim MS, Behdin N, Castellon SA, Hinkin CH (2012) Cognitive reserve as a protective factor in older HIV-positive patients at risk for cognitive decline. Appl Neuropsychol Adult 19(1):16–25PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hammer SM, Saag MS, Schechter M et al (2006) Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA panel. JAMA 296(7):827–843PubMedCrossRefGoogle Scholar
  21. Harezlak J, Buchthal S, Taylor M et al (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in the era of highly active antiretroviral treatment. AIDS 25(5):625–633PubMedCrossRefGoogle Scholar
  22. Heaton R, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F et al (2010) HIV-associated neurocognitive disorder persists in the era of potent anti-retroviral therapy. Neurology 75(23):2087–2096PubMedCentralPubMedCrossRefGoogle Scholar
  23. Heaton RK, Franklin DR, Ellis RJ et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature and predictors. J Neurovirol 17(1):3–16PubMedCentralPubMedCrossRefGoogle Scholar
  24. Heaton RK, Miller SW, Taylor MJ, Grant I (2004) Revised comprehensive norms for an expanded Halstead-Reitan Battery: demographically adjusted neuropsychological norms for African American and Caucasian adults. Psychological Assessment Resources, Inc.Google Scholar
  25. Karp A, Kareholt I, Qui C, Bellander T, Winblad B, Fratiglioni L (2004) Relation of education and occupation-based socioeconomic status to incident Alzheimer’s disease. Am J Epidemiol 159:175–183PubMedCrossRefGoogle Scholar
  26. Katzman R (1993) Education and the prevalence of dementia and Alzheimer’s disease. Neurology 43(1):13–20PubMedCrossRefGoogle Scholar
  27. Kaul M, Lipton SA (1999) Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96(14):8212–8216, PMCID: 22214PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lee PL, Yiannoutsos CT, Ernst T et al (2003) A multi-center 1H MRS study of the AIDS dementia complex: validation and preliminary analysis. J Magn Reson Imaging 17(6):625–633PubMedCrossRefGoogle Scholar
  29. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC et al (2008) Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65:65–70PubMedCentralPubMedCrossRefGoogle Scholar
  30. Letendre SL, Zheng JC, Kaul M, Yiannoutsos CT, Ellis RJ, Taylor MJ et al (2011) Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals. J Neurovirol 17(1):63–69PubMedCentralPubMedCrossRefGoogle Scholar
  31. Letendre S, Zheng J, Yiannoutsos C, Lopez A, Ellis R, Marquie-Beck J et al (2004) Chemokines correlate with cerebral metabolites on magnetic resonance spectroscopy: a substudy of ACTG 301 and 700. 11th Conference in Retroviruses and Opportunistic Infections, San FranciscoGoogle Scholar
  32. Lopez-Villegas D, Lenkinski RE, Frank I (1997) Biochemical changes in the frontal lobe of HIV-infected individuals detected by magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 94(18):9854–9859PubMedCentralPubMedCrossRefGoogle Scholar
  33. Manly JJ, Touradji P, Tang MX, Stern Y (2003) Literacy and memory decline among ethnically diverse elders. J Clin Exp Neuropsychol 25(5):680–690PubMedCrossRefGoogle Scholar
  34. McArthur JC, McClernon DR, Cronin MF et al (1997) Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42(5):689–698PubMedCrossRefGoogle Scholar
  35. Meyerhoff DJ, MacKay S, Poole N, Dillon WP, Weiner MW, Fein G (1994) Acetylaspartate reductions measured by 1H MRSI in cognitively impaired HIV-seropositive individuals. Magn Reson Imaging 12:653–659PubMedCrossRefGoogle Scholar
  36. Mohamed MA, Barker PB, Skolasky RL et al (2010) Brain metabolism and cognitive impairment in HIV infection: a 3T magnetic resonance spectroscopy study. Magn Reson Imaging 28(9):1251–1257PubMedCentralPubMedCrossRefGoogle Scholar
  37. Morgan EE, Woods SP, Smith C, Weber E, Scott JC, Grant I (2012) Lower cognitive reserve among individuals with syndromic HIV-associated neurocognitive disorders (HAND). AIDS Behav 16(8):2279–2285PubMedCentralPubMedCrossRefGoogle Scholar
  38. Navia BA, Cho ES, Petito CK, Price RW (1986a) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19(6):525–535PubMedCrossRefGoogle Scholar
  39. Navia BA, Harezlak J, Schiffito G, et al (2011) Longitudinal study of neurological injury in HIV-infected subjects on stable antiretroviral therapies: the HIV Neuroimaging Consortium Cohort Study. Conference on Retroviral Infections and Opportunistic Infections, MarchGoogle Scholar
  40. Navia BA, Jordan BD, Price RW (1986b) The AIDS dementia complex: I. Clinical features. Ann Neurol 19(6):517–524PubMedCrossRefGoogle Scholar
  41. Navia BA, Rostasy K (2005) The AIDS dementia complex: clinical and basic neuroscience with implications for novel molecular therapies. Neurotox Res 8:3–24PubMedCrossRefGoogle Scholar
  42. Palella FJ Jr, Delaney KM, Moorman AC et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338(13):853–860PubMedCrossRefGoogle Scholar
  43. Paul RH, Yiannoutsos CT, Miller EN et al (2007) Proton MRS and neuropsychological correlates in AIDS dementia complex: evidence of subcortical specificity. J Neuropsychiatry Clin Neurosci 19:283–292PubMedCrossRefGoogle Scholar
  44. Perry W, Hilsabeck RC, Hassanein TI (2008) Cognitive dysfunction in chronic hepatitis C: a review. Dig Dis Sci 53(2):307–321PubMedCrossRefGoogle Scholar
  45. Price RW, Brew BJ (1988) The AIDS dementia complex. J Infect Dis 158(5):1079–1083PubMedCrossRefGoogle Scholar
  46. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4):260–264PubMedCrossRefGoogle Scholar
  47. Qiu C, Backman L, Winblad B, Aguero-Torres H, Fratiglioni L (2001) The influence of education on clinically diagnosed dementia incidence and mortality data from the Kungsholmen Project. Arch Neurol 58:2034–2039PubMedCrossRefGoogle Scholar
  48. Robertson KR, Smurzynski M, Parsons TD et al (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21(14):1915–1921PubMedCrossRefGoogle Scholar
  49. Rostasy K, Monti L, Yiannoutsos C et al (1999) Human immunodeficiency virus infection, inducible nitric oxide synthase expression, and microglial activation: pathogenetic relationship to the acquired immunodeficiency syndrome dementia complex. Ann Neurol 46(2):207–216PubMedCrossRefGoogle Scholar
  50. Sacktor N, McDermott MP, Marder K et al (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8(2):136–142PubMedCrossRefGoogle Scholar
  51. Salvan AM, Vion-Dury J, Confort-Gouny S, Nicoli F, Lamoureux S, Cozzone PJ (1997) Brain proton magnetic resonance spectroscopy in HIV-related encephalopathy: identification of evolving metabolic patterns in relation to dementia and therapy. AIDS Res Hum Retroviruses 13:1055–1066PubMedCrossRefGoogle Scholar
  52. Satz P, Morgenstern H, Miller EN et al (1993) Low education as a possible risk factor for cognitive abnormalities in HIV-1: findings from the multicenter AIDS Cohort Study (MACS). J Acquir Immune Defic Syndr 6(5):503–511PubMedCrossRefGoogle Scholar
  53. Shapiro ME, Mahoney JR, Peyser D, Zingman BS, Verghese J (2014) Cognitive reserve protects against apathy in individuals with human immunodeficiency virus. Arch Clin Neuropsychol 29(1):110–120PubMedCrossRefGoogle Scholar
  54. Siuciak J, Pickering EH, Immermann F, Kuhn M, Shaw L, Potter W (2012) Cerebrospinal fluid (CSF) biomarkers in Alzheimer’s disease (AD), mild cognitively impaired (MCI) and age-matched healthy controls (HC) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Alzheimers Dement 8(4):216–217CrossRefGoogle Scholar
  55. Stern Y (2006) Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 20(2):112–117PubMedCrossRefGoogle Scholar
  56. Smurzynski M, Wu K, Letendre S, Robertson K, Bosch RJ, Clifford DB, Ellis R (2011) Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS (London, England) 25(3):357CrossRefGoogle Scholar
  57. Stern Y (2011) Elaborating a hypothetical concept: comments on the special series on cognitive reserve. J Int Neuropsychol Soc 17(4):639–642PubMedCentralPubMedGoogle Scholar
  58. Stern Y, Albert S, Tang MX, Tsai WY (1999) Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology 53(9):1942–1947PubMedCrossRefGoogle Scholar
  59. Stern RA, Silva SG, Chaisson N, Evans DL (1996) Influence of cognitive reserve on neuropsychological functioning in asymptomatic human immunodeficiency virus-1 infection. Arch Neurol 53(2):148–153PubMedCrossRefGoogle Scholar
  60. Tate DF, Sampat M, Harezlak J et al (2011) Regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies. J Neuro VirolGoogle Scholar
  61. Tozzi V, Balestra P, Bellagamba R et al (2007) Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 45(2):174–182PubMedCrossRefGoogle Scholar
  62. Tracey I, Carr CA, Guimaraes AR, Worth JL, Navia BA, Gonzalez RG (1996) Brain choline-containing compounds are elevated in HIV-positive patients before the onset of AIDS dementia complex: a proton magnetic resonance spectroscopic study. Neurology 46(3):783–788PubMedCrossRefGoogle Scholar
  63. Tucker AM, Stern Y (2011) Cognitive reserve in aging. Curr Alzheimer Res 8(4):354–360PubMedCentralPubMedCrossRefGoogle Scholar
  64. Valcour VG, Shikuma CM, Shiramizu BT et al (2005) Diabetes, insulin resistance, and dementia among HIV-1-infected patients. J Acquir Immune Defic Syndr 38:31–36PubMedCentralPubMedCrossRefGoogle Scholar
  65. Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes OA et al (2004) Age, apolipoprotein E4, and the risk of HIV dementia: the Hawaii Aging with HIV Cohort. J Neuroimmunol 157(1–2):197–202PubMedCrossRefGoogle Scholar
  66. Valcour V, Yee P, Williams AE, Shiramizu B, Watters M, Selnes O et al (2006) Lowest ever CD4 lymphocyte count (CD4 nadir) as a predictor of current cognitive and neurological status in human immunodeficiency virus type 1 infection—the Hawaii Aging with HIV Cohort. J Neurovirol 12:387–391PubMedCrossRefGoogle Scholar
  67. van Gorp WG, Hinkin CH (2005) Triple trouble: cognitive deficits from hepatitis C, HIV, and methamphetamine. Neurology 64(8):1328–1329PubMedCrossRefGoogle Scholar
  68. Woods AJ, Cohen RA, Pahor M (2013) Cognitive frailty: frontiers and challenges. J Nutr Health Aging 17(9):741–743PubMedCrossRefGoogle Scholar
  69. Yiannoutsos CT, Ernst T, Chang L, Lee PL, Richards T, Marra CM et al (2004) Regional patterns of brain metabolites in AIDS dementia complex. Neuroimage 23:928–935PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2014

Authors and Affiliations

  • J. Harezlak
    • 1
    Email author
  • R. Cohen
    • 2
  • A. Gongvatana
    • 3
  • M. Taylor
    • 3
  • S. Buchthal
    • 4
  • G. Schifitto
    • 5
  • J. Zhong
    • 5
  • E. S. Daar
    • 6
  • J. R. Alger
    • 7
  • M. Brown
    • 8
  • E. J. Singer
    • 7
  • T. B. Campbell
    • 8
  • D. McMahon
    • 9
  • Y. T. So
    • 10
  • C. T. Yiannoutsos
    • 1
  • B. A. Navia
    • 11
  • The HIV Neuroimaging Consortium
  1. 1.Indiana University Fairbanks School of Public HealthIndianapolisUSA
  2. 2.University of Florida College of MedicineGainesvilleUSA
  3. 3.University of California - San Diego School of MedicineLa JollaUSA
  4. 4.University of HawaiiHonoluluUSA
  5. 5.University of Rochester School of MedicineRochesterUSA
  6. 6.Los Angeles Biomedical Research Institute at Harbor-UCLA Medical CenterUniversity of CaliforniaLos AngelesUSA
  7. 7.David Geffen School of Medicine at UCLALos AngelesUSA
  8. 8.University of Colorado DenverAuroraUSA
  9. 9.University of PittsburghPittsburghUSA
  10. 10.Stanford University Medical CenterPalo AltoUSA
  11. 11.Tufts University School of MedicineBostonUSA

Personalised recommendations