Journal of NeuroVirology

, Volume 19, Issue 5, pp 461–470 | Cite as

Experimental measles encephalitis in Lewis rats: dissemination of infected neuronal cell subtypes

  • Ulrike Jehmlich
  • Jennifer Ritzer
  • Jens Grosche
  • Wolfgang Härtig
  • Uwe G. Liebert
Article

Abstract

Acute measles may lead in rare instances to the chronic progressive central nervous system disease process subacute sclerosing panencephalitis (SSPE). SSPE results from a persistent measles virus (MV) infection with incomplete virus replication involving the entire human brain. The experimental encephalitis model in Lewis rats was used to define affected cell populations after infection with the neurotropic MV strain CAM/RB. Distribution patterns of MV were analysed by appropriate cell markers in the brain sections of infected animals employing multiple immunofluorescence labelling and confocal laser scanning microscopy. MV was detected in neurones but not in astrocytes, oligodendrocytes, microglia, and endothelial cells. GABAergic and glutamatergic neurons displayed MV antigen whereas cholinergic and catecholaminergic neurons appeared devoid of MV immunoreactivity. Mapping of the rat brain has revealed MV-infected neurones predominantly in motor, somatosensory, auditory, and visual cortices as well as in the basal ganglia and thalamic nuclei of infected rats. The results indicate that MV apparently disseminates via GABAergic and glutaminergic neurones and their processes. The tightly restricted viral distribution pattern is consistent with both inefficient immune clearance from infected neurones and with the observed disease symptoms.

Keywords

Neurons GABAergic Glutamatergic Measles virus SSPE 

References

  1. Abdullah H, Earle JA, Gardiner TA, Tangy F, Cosby SL (2009) Persistent measles virus infection of mouse neural cells lacking known human entry receptors. Neuropathol Appl Neurobiol 35:473–486PubMedCrossRefGoogle Scholar
  2. Abdullah H, Brankin B, Brady C, Cosby SL (2013) Wild-type measles virus infection upregulates poliovirus receptor-related 4 and causes apoptosis in brain endothelial cells by induction of tumor necrosis factor-related apoptosis ligand. J Neuropathol Exp Neurol 72:681–696PubMedCrossRefGoogle Scholar
  3. Acarin L, Vela JM, González B, Castellano B (1994) Demonstration of poly-N-acetyl lactosamine residues in ameboid and ramified microglial cells in rat brain by tomato lectin binding. J Histochem Cytochem 42:1033–1041PubMedCrossRefGoogle Scholar
  4. Allen IV, McQuaid S, McMahon J, Kirk J, McConnell R (1996) The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. J Neuropathol Exp Neurol 55:471–480PubMedCrossRefGoogle Scholar
  5. Andres O, Obojes K, Kim KS, ter Meulen V, Schneider-Schaulies J (2003) CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J Gen Virol 84:1189–1197PubMedCrossRefGoogle Scholar
  6. Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18:8648–8659PubMedGoogle Scholar
  7. Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT Jr, Edwards RH, Storm-Mathisen J, Chaudhry F (2004) Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 480:264–280PubMedCrossRefGoogle Scholar
  8. Burrows GG, Bebo BF, Adlard KL, Vandenbark AA, Ofner H (1998) Two-domain MHC II molecules form stable complexes with myelin basic protein 69–89 peptide that detect and inhibit rat encephalitogenic T cells and treat experimental autoimmune encephalomyelitis. J Immunol 16:5987–5996Google Scholar
  9. Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205PubMedCrossRefGoogle Scholar
  10. Cassiani-Ingoni R, Greenstone HL, Donati D, Fogdell-Hahn A, Martinelli E, Refai D, Martin R, Berger EA, Jacobson S (2005) CD46 on glial cells can function as a receptor for viral glycoprotein-mediated cell-cell fusion. Glia 52:252–258PubMedCrossRefGoogle Scholar
  11. Chaudhry FA, Reimer RJ, Bellocchio EZ, Danboldt NC, Osen KK, Edwards RH, Storm-Mathisen J (1998) The vesicular GABA transporter, VGAT, localises to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18:9733–9750PubMedGoogle Scholar
  12. Cueva JG, Haverkamp S, Reimer RJ, Edwards R, Wässle H, Brecha NC (2002) Vesicular gamma-aminobutyric acid transporter expression in amacrine and horizontal cells. J Com Neurol 445:227–237CrossRefGoogle Scholar
  13. Dijkstra CD, Döpp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589–599PubMedGoogle Scholar
  14. Duprex WP, McQuaid S, Rima BK (2000) Measles virus-induced disruption of the glial-fibrillary-acidic protein cytoskeleton in an astrocytoma cell line (U-251). J Virol 74:3874–3880PubMedCrossRefGoogle Scholar
  15. Esiri MM, Oppenheimer DR, Brownell B, Haire M (1982) Distribution of measles antigen and immunoglobulin-containing cells in the CNS in subacute sclerosing panencephalitis (SSPE) and atypical measles encephalitis. J Neurol Sci 53:29–43PubMedCrossRefGoogle Scholar
  16. Foster AC, Kemp JA (2006) Glutamate- and GABA-based CNS therapeutics. Curr Opin Pharmacol 6:7–17PubMedCrossRefGoogle Scholar
  17. Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260PubMedCrossRefGoogle Scholar
  18. Friedman HM, Macarak EJ, MacGregor RR, Wolfe J, Kefalides NA (1981) Virus infection of endothelial cells. J Infect Dis 143:266–273PubMedCrossRefGoogle Scholar
  19. Griffin DE, Oldstone MB (2009) Measles. History and basic biology. Introduction. Curr Top Microbiol Immunol 329:1PubMedGoogle Scholar
  20. Halliday GM, Cullen KM, Kril JJ, Harding AJ, Harasty J (1996) Glial fibrillary acidic protein (GFAP) immunohistochemistry in human cortex: a quantitative study using different antisera. Neurosci Lett 209:29–32PubMedCrossRefGoogle Scholar
  21. Härtig W, Riedel A, Grosche J, Edwards RH, Fremeau RT Jr, Harkany T, Brauer K, Arendt T (2003) Complementary distribution of vesicular glutamate transporters 1 and 2 in the nucleus accumbens of rat: relationship to calretinin-containing extrinsic innervation and calbindin-immunoreactive neurons. J Comp Neurol 465:1–10PubMedCrossRefGoogle Scholar
  22. Härtig W, Stieler J, Boerema AS, Wolf J, Schmidt U, Weissfuss J, Bullmann T, Strijkstra AM, Arendt T (2007) Hibernation model of tau phosphorylation in hamsters: selective vulnerability of cholinergic basal forebrain neurons—implications for Alzheimer’s disease. Eur J Neurosci 25:69–80PubMedCrossRefGoogle Scholar
  23. Harkany T, Härtig W, Berghuis P, Dobszay MB, Zilberter Y, Edwards RH, Mackie K, Ernfors P (2003) Complementary distribution of type 1 cannabinoid receptors and vesicular glutamate transporter 3 in basal forebrain suggests input-specific retrograde signalling by cholinergic neurons. Eur J Neurosci 18:1979–1992PubMedCrossRefGoogle Scholar
  24. Haycock JW (1987) Stimulation-dependent phosphorylation of tyrosine hydroxylase in rat corpus striatum. Brain Res Bull 19:619–622PubMedCrossRefGoogle Scholar
  25. Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862PubMedCrossRefGoogle Scholar
  26. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9PubMedCrossRefGoogle Scholar
  27. Kägi U, Berchtold MW, Heizmann CW (1987) Ca2+-binding parvalbumin in rat testis. Characterization, localization, and expression during development. J Biol Chem 262:7314–7320PubMedGoogle Scholar
  28. Kirk J, Zhou AL, McQuaid S, Cosby SL, Allen IV (1991) Cerebral endothelial cell infection by measles virus in subacute sclerosing panencephalitis: ultrastructural and in situ hybridization evidence. Neuropathol Appl Neurobiol 17:289–297PubMedCrossRefGoogle Scholar
  29. Lassmann H, Zimprich F, Vass K, Hickey WF (1991) Microglial cells are a component of the perivascular glia limitans. J Neurosci Res 28:236–243PubMedCrossRefGoogle Scholar
  30. Lehrmann E, Guidetti P, Löve A, Williamson J, Bertram EH, Schwarcz R (2008) Glial activation precedes seizures and hippocampal neurodegeneration in measles virus-infected mice. Epilepsia 49(Suppl 2):13–23PubMedCrossRefGoogle Scholar
  31. Leifer D, Kowall NW (1993) Immunohistochemical patterns of selective cellular vulnerability in human cerebral ischemia. J Neurol Sci 119:217–228PubMedCrossRefGoogle Scholar
  32. Lewandowska E, Wierzba-Bobrowicz T, Kosno-Kruszewska E, Lechowicz W, Schmidt-Sidor B, Szpak GM, Bertrand E, Pasennik E, Gwiazda E (2004) Ultrastructural evaluation of activated forms of microglia in human brain in selected neurological diseases (SSPE, Wilson’s disease and Alzheimer’s disease). Folia Neuropathol 42:81–91PubMedGoogle Scholar
  33. Liebert UG (1997) Measles virus infections of the central nervous system. Intervirology 40:176–184PubMedCrossRefGoogle Scholar
  34. Liebert UG (2001) Slow and persistent virus infections of neurons—a compromise for neuronal survival. Curr Top Microbiol Immunol 253:35–60PubMedCrossRefGoogle Scholar
  35. Liebert UG, Baczko K, Budka H, ter Meulen V (1986) Restricted expression of measles virus proteins in brains from cases of subacute sclerosing panencephalitis. J Gen Virol 67:2435–2444PubMedCrossRefGoogle Scholar
  36. Liebert UG, ter Meulen V (1987) Virological aspects of measles virus-induced encephalomyelitis in Lewis and BN rats. J Gen Virol 68:1715–1722PubMedCrossRefGoogle Scholar
  37. Liebert UG, Finke D (1995) Measles virus infections in rodents. Curr Top Microbiol Immunol 191:149–166PubMedCrossRefGoogle Scholar
  38. MacGregor RR, Friedman HM, Macarak EJ, Kefalides NA (1980) Virus infection of endothelial cells increases granulocyte adherence. J Clin Invest 65:1469–1477PubMedCrossRefGoogle Scholar
  39. Makhortova NR, Askovich P, Patterson CE, Gechman LA, Gerard NP, Rall GF (2007) Neurokinin-1 enables measles-virus transsynaptic spread in neurons. Virology 362:235–244PubMedCrossRefGoogle Scholar
  40. Matsumoto H, Kumon Y, Watanabe H, Ohnishi T, Shudon M, Li C, Takahashi H, Ismai Y, Tanaka J (2007) Antibodies to CD11b, CD68, and lection label neutrophils rather than microglia in traumatic and ischemic brain lesions. J Neurosci Res 85:994–1009PubMedCrossRefGoogle Scholar
  41. McQuaid S, Cosby SL (2002) An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Invest 82:403–409PubMedCrossRefGoogle Scholar
  42. Mesquita R, Castaños-Velez E, Biberfeld P, Troian RM, de Siqueira MM (1998) Measles virus antigen in macrophage/microglial cells and astrocytes of subacute sclerosing panencephalitis. APMIS 106:553–561PubMedCrossRefGoogle Scholar
  43. Moult PR (2009) Neuronal glutamate and GABA receptor function in health and disease. Biochem Soc Trans 37:1317–1322PubMedCrossRefGoogle Scholar
  44. Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM, Leonard VH, Navaratnarajah CK, Frenzke M, Wong XX, Sawatsky B, Ramachandran S, McCray PB, Cichutek K, von Messling V, Lopez M, Cattaneo R (2011) Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nat Geosci 480:530–533Google Scholar
  45. Mustafa MM, Weitman SD, Winick NJ, Bellini WJ, Timmons CF, Siegel JD (1993) Subacute measles encephalitis in the young immunocompromised host: report of two cases diagnosed by polymerase chain reaction and treated with ribavirin and review of the literature. Clin Infect Dis 16:654–660PubMedCrossRefGoogle Scholar
  46. Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. Virology 67:6025–6032Google Scholar
  47. Noyce RS, Bondre DG, Ha MN, Lin LT, Sisson G, Trao MS, Richardson CD (2011) Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog 7:e1002240PubMedCrossRefGoogle Scholar
  48. Nullmeier S, Panther P, Dobrowolny H, Frotscher M, Zhao S, Schwegler H, Wolf R (2011) Region-specific alteration of GABAergic markers in the brain of heterozygous reeler mice. Eur J Neurosci 33:689–698PubMedCrossRefGoogle Scholar
  49. Oldstone MB (2009) Modelling subacute sclerosing panencephalitis in a transgenic mouse system: uncoding pathogenesis of disease and illuminating components of immune control. Curr Top Microbiol Immunol 330:31–54PubMedCrossRefGoogle Scholar
  50. Oglesbee M, Niewiesk S (2011) Measles virus neurovirulence and host immunity. Future Virol 6:85–99PubMedCrossRefGoogle Scholar
  51. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San DiegoGoogle Scholar
  52. Plumb J, Duprex WP, Cameron CH, Richter-Landsberg C, Talbot P, McQuaid S (2002) Infectiion of human oligodendroglioma cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Neurovirol 8:24–34PubMedCrossRefGoogle Scholar
  53. Reuter D, Schneider-Schaulies J (2010) Measles virus infections of the central nervous system: human disease, animal models, and approaches to therapy. Med Microbiol Immunol 199:261–271PubMedCrossRefGoogle Scholar
  54. Riedel A, Härtig W, Seeger G, Gärtner U, Brauer K, Arendt T (2002) Principles of rat subcortical forebrain organization: a study using histological techniques and multiple fluorescence labeling. J Chem Neuroanat 23:75–104PubMedCrossRefGoogle Scholar
  55. Rima B, Duprex P (2005) Molecular mechanisms of measles virus persistence. Virus Res 111:132–147PubMedCrossRefGoogle Scholar
  56. Robinson AP, White TM, Mason DW (1986) Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57:239–247PubMedGoogle Scholar
  57. Schneider-Schaulies S, Liebert UG, Baczko K, ter Meulen V (1990) Restricted expression of measles virus in primary rat astroglial cells. Virology 177:802–806PubMedCrossRefGoogle Scholar
  58. Schwaller B, Buchwald P, Blümcke I, Celio MR, Hunziker W (1993) Characterization of a polyclonal antiserum against the purified human recombinant calcium binding protein calretinin. Cell Calcium 14:639–648PubMedCrossRefGoogle Scholar
  59. Stanley BG, Urstadt KR, Charles JK, Kee T (2011) Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake. Physiol Behav 104:40–46PubMedCrossRefGoogle Scholar
  60. Takamori S, Riedel D, Jahn R (2000) Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles. J Neurosci 20:4904–4911PubMedGoogle Scholar
  61. Takasu T, Mgone JM, Mgone CS, Miki K, Komase K, Namae H, Saito Y, Kokubun Y, Nishimura T, Kawanishi R, Mizutani T, Markus TJ, Kono J, Asuo PG, Alpers MP (2003) A continuing high incidence of subacute sclerosing panencephalitis (SSPE) in the Eastern Highlands of Papua New Guinea. Epidemiol Infect 131:887–898PubMedCrossRefGoogle Scholar
  62. Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nat Geosci 406:893–897Google Scholar
  63. Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J (1983) PGP 9.5- a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278:224–228PubMedCrossRefGoogle Scholar
  64. Varea E, Nácher J, Blasco-Ibáñez JM, Gómez-Climent MA, Castillo-Gómez E, Crespo C, Martínez-Guijarro FJ (2005) PSA-NCAM expression in the rat medial prefrontal cortex. Neuroscience 136:435–443PubMedCrossRefGoogle Scholar
  65. Watanabe A, Yoneda M, Ikeda F, Terao-Muto Y, Sato H, Kai C (2010) CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells. J Virol 84:4183–4193PubMedCrossRefGoogle Scholar
  66. Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673PubMedCrossRefGoogle Scholar
  67. Yanagi Y, Takeda M, Ohno S, Seki F (2006) Measles virus receptors and tropism. Jpn J Infect Dis 59:1–5PubMedGoogle Scholar
  68. Young VA, Rall GF (2009) Making it to the synapse: measles virus spread in and among neurons. Curr Top Microbiol Immunol 330:3–30PubMedCrossRefGoogle Scholar
  69. Zander JF, Münster-Wandowski A, Brunk I, Pahner I, Gómez-Lira G, Heinemann U, Gutiérrez R, Laube G, Ahnert-Hilger G (2010) Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J Neurosci 30:7634–7645PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2013

Authors and Affiliations

  • Ulrike Jehmlich
    • 1
    • 3
  • Jennifer Ritzer
    • 1
  • Jens Grosche
    • 2
  • Wolfgang Härtig
    • 2
  • Uwe G. Liebert
    • 1
  1. 1.Institute of VirologyLeipzig UniversityLeipzigGermany
  2. 2.Department of Pathophysiology of Neuroglia, Paul Flechsig Institute for Brain ResearchLeipzig UniversityLeipzigGermany
  3. 3.ZKI HIKEUniversity of GreifswaldGreifswaldGermany

Personalised recommendations